matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysislimes vom Integral über x^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - limes vom Integral über x^n
limes vom Integral über x^n < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

limes vom Integral über x^n: Frage
Status: (Frage) beantwortet Status 
Datum: 12:29 Fr 08.07.2005
Autor: Brinchen

Hallo!

Bin total verzweifelt, weiß nicht mehr weiter...

Wie zeigt man, dass
[mm] \limes_{n\rightarrow\infty} \integral_{0}^{1} [/mm] {f( [mm] x^{n}) [/mm] dx}=f(0) ist
für jede Stetige Funktion f von [0,1] nach [mm] \IR [/mm]
(^heißt "hoch")

Danke im Voraus für DEINE Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
limes vom Integral über x^n: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Fr 08.07.2005
Autor: Julius

Hallo!

Für [mm] $0\le [/mm] x <1$ gilt:

[mm] $\lim\limits_{n \to \infty}x^n=0$, [/mm]

also wegen der Stetigkeit von $f$:

[mm] $\lim\limits_{n \to \infty}f(x^n)=f(0)$ [/mm] Lebesgue-fast sicher auf $[0,1]$.

Da $f$ auf dem Kompaktum $[0,1]$ stetig, also beschränkt ist, liefert die konstante Funktion [mm] $\Vert [/mm] f [mm] \Vert_{\infty}=\sup\limits_{x \in [0,1]}|f(x)|$ [/mm] eine geeignete Lebesgue-Majorante auf dem Kompaktum $[0,1]$.

Die Behauptung folgt nun aus dem Satz von der dominierten (=majorisierten) Konvergenz (von Lebesgue):

[mm] $\lim\limits_{n \to \infty} \int\limits_0^1 f(x^n)\, [/mm] dx = [mm] \int\limits_0^1 \lim\limits_{n \to \infty} f(x^n)\, [/mm] dx = [mm] \int\limits_0^1 f(0)\, [/mm] dx = f(0)$.

Viele Grüße
Julius


Bezug
                
Bezug
limes vom Integral über x^n: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Fr 08.07.2005
Autor: Brinchen

Vielen Dank für deine Hilfe!
Das baut mich jetzt auf... in Hinsicht auf eine Menge weiterer (für mich unlösbaren) Aufgaben...

Bezug
        
Bezug
limes vom Integral über x^n: Alternative: MWS
Status: (Antwort) fertig Status 
Datum: 16:40 Fr 08.07.2005
Autor: Fire21

Hi,

alternativ kann man das auch mit dem MWS der Integralrechnung zeigen:

[mm]\exists\xi\in (0;1): \int_{0}^{1}f(x)dx=f(\xi)[/mm]
also
[mm]\lim_{n\rightarrow\infty }\int ...=\lim_{n\rightarrow\infty}f(\xi^{n})=f(\lim_{n\rightarrow\infty}\xi^{n})=f(0)[/mm]

wobei die Stetigkeit von f und [mm]\lim_{n\rightarrow\infty}\xi^{n}=0[/mm] wegen [mm]0<\xi<1[/mm] benutzt wurde.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]