matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenlimes inf,sup
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - limes inf,sup
limes inf,sup < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

limes inf,sup: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:52 Di 10.05.2011
Autor: Mandy_90

Aufgabe
Seien [mm] (a_{n}), (b_{n}) [/mm] zwei Folgen in [mm] \IR.Man [/mm] zeige:

a) [mm] a_{n} \le b_{n} \forall [/mm] n [mm] \in \IN \Rightarrow \underline{lim}a_{n} \le \underline{lim}b_{n} [/mm] und [mm] \overline{lim}a_{n} \le \overline{lim}a_{n} [/mm]

b) Falls [mm] (a_{n}) [/mm] und [mm] (b_{n}) [/mm] beschränkt sind gilt:
[mm] \underline{lim}a_{n}+\underline{lim}b_{n} \le \underline{lim}(a_{n}+b_{n}) \le \underline{lim}a_{n}+\overline{lim}b_{n} [/mm]

Hallo zusammen^^

Ich hab ein paar Schwierigkeiten mit dem Beweis dieser Aufgabe. Die a) ist schon so klar, dass ich nicht weiß wie ich es beweisen soll.Ich habs so versucht:

a) Sei [mm] a=\underline{lim}a_{n} [/mm] und [mm] b=\underline{lim}b_{n}. [/mm] Dann ist a [mm] \in E(\{a_{n}\}) [/mm] und b [mm] \in E(\{b_{n}\}) [/mm] und a ist untere Schranke von [mm] E(\{a_{n}\}), [/mm] d.h. a [mm] \le E(\{a_{n}\}) [/mm] und analog ist b [mm] \le E(\{b_{n}\}). [/mm]
Dann weiß ich noch,dass jeweils eine konvergente Teilfolge eyistier mit [mm] \limes_{n\rightarrow\infty} a_{n}_{k}=a [/mm] und [mm] \limes_{n\rightarrow\infty} b_{n}_{k}=b. [/mm]
Das bedeutet wiederum,dass für alle [mm] \varepsilon [/mm] >0 ein M [mm] \in \IN [/mm] existiert,sodass [mm] d(x_{n}_{k},a)< \varepsilom [/mm] für alle n [mm] \ge [/mm] n, bzw. [mm] a_{n}_{k} \in K(a,\varepsilon) [/mm] für alle n [mm] \ge [/mm] N und analog für b.
Ich weiß zwar nicht,ob mir diese ganzen Infos was bringen, aber ich habe die schonmal.
Ich hatte überlegt einen Widerspruchsbeweis zu führen.
Angenommen es ist a>b. Dann folgt daraus, dass [mm] E(\{a_{n}\})>b. [/mm]
So und weiter habe ich jetzt leider keine Idee.Kann mir jemand weiterhelfen?

b) Hier kann ich schonmal zeigen, dass
[mm] \underline{lim}a_{n}+\underline{lim}b_{n} \le \underline{lim}a_{n}+\overline{lim}b_{n}. [/mm] Denn wenn ich auf beiden Seiten [mm] \underline{lim}a_{n} [/mm] abziehe, habe ich [mm] \underline{lim}b_{n} \le \overline{lim}b_{n} [/mm] und das ist immer eine wahre Aussage, wobei ich glaube dass mir das nichts bringt, das gezeigt zu haben.

Also ist zuerst zu zeigen, dass [mm] \underline{lim}a_{n}+\underline{lim}b_{n} \le \underline{lim}(a_{n}+b_{n}). [/mm]
Hier habe ich mir auch erstmal die Voraussetzungen aus a) aufgeschrieben. Und jetzt ist [mm] a_{n}) [/mm]  beschränkt,d.h. es existiert ein a [mm] \in a_{n} [/mm] und ein M>0, sodass [mm] a_{n} \subseteq [/mm] K(a,M), analog für b.
So, ich weiß jetzt irgendwie nicht, was ich über den [mm] \underline{lim}(a_{n}+b_{n}) [/mm] aussagen kann. Ich kenne keinen Satz oder Regeln,die etwas darüber aussagen.
Hat jemand einen Tippmwie man am besten vorgeht?

Vielen Dank
lg

        
Bezug
limes inf,sup: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Sa 14.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]