matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenlim f'(x)=f'(x_{0})
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - lim f'(x)=f'(x_{0})
lim f'(x)=f'(x_{0}) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim f'(x)=f'(x_{0}): Idee - Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 15.01.2013
Autor: silfide

Aufgabe
Sei [mm] I\subset\IR [/mm] ein Intervall. [mm] f:I\to\IR [/mm] in [mm] x_{0} \in [/mm] I stetig. Es exsistiere ein [mm] \delta>0 [/mm] so, dass f auf [mm] U_{\delta}(x_{0}) [/mm] \ [mm] \{x_{0}\} [/mm] differenzierbar ist. Exsistiert [mm] \limes_{x\rightarrow\ x_{0}} [/mm] f'(x), so ist f in [mm] x_{0} [/mm] differenzierbar und f' ist in [mm] x_{0} [/mm] stetig, d.h.
[mm] \limes_{x\rightarrow\ x_{0}} f'(x)=f'(x_{0}) [/mm]

Hallo Leute,

habe nun obige Aufgabe zu lösen und ne Idee...

Sei [mm] \limes_{x\rightarrow\ x_{0}} [/mm] f'(x)=A

Nach MWS exs. [mm] \bruch{f(x)-f(x_{0})}{x-x_{0}}=f'(G_{x_{0}}) [/mm] für ein G zwischen [mm] x_{0} [/mm] und x mit
[mm] \limes_{x\rightarrow\ x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}}=\limes_{x\rightarrow\ x_{0}}f'(G_{x_{0}})=A [/mm]

dann [mm] (x\rightarrow\ x_{0} [/mm] folgt [mm] G_{x_{0}}\rightarrow\ x_{0}) [/mm]
Daraus folgt f diffbar in [mm] x_{0} [/mm] und es gilt [mm] f'(x_{0})=A=\limes_{x\rightarrow\ x_{0}} [/mm] f'(x)

Wobei G dieses andere Zeichen ist, so ein großes geschwungendes E (keine Ahnung wie es jetzt heißt).

Kann man das so tun?? Also ist es schlüssig??

Silfide

        
Bezug
lim f'(x)=f'(x_{0}): Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 15.01.2013
Autor: Helbig

Hallo Silfide,

> Sei [mm]I\subset\IR[/mm] ein Intervall. [mm]f:I\to\IR[/mm] in [mm]x_{0} \in[/mm] I
> stetig. Es exsistiere ein [mm]\delta>0[/mm] so, dass f auf
> [mm]U_{\delta}(x_{0})[/mm] \ [mm]\{x_{0}\}[/mm] differenzierbar ist.
> Exsistiert [mm]\limes_{x\rightarrow\ x_{0}}[/mm] f'(x), so ist f in
> [mm]x_{0}[/mm] differenzierbar und f' ist in [mm]x_{0}[/mm] stetig, d.h.
>  [mm]\limes_{x\rightarrow\ x_{0}} f'(x)=f'(x_{0})[/mm]
>  Hallo
> Leute,
>  
> habe nun obige Aufgabe zu lösen und ne Idee...
>
> Sei [mm]\limes_{x\rightarrow\ x_{0}}[/mm] f'(x)=A
>  
> Nach MWS exs. [mm]\bruch{f(x)-f(x_{0})}{x-x_{0}}=f'(G_{x_{0}})[/mm]
> für ein G zwischen [mm]x_{0}[/mm] und x mit
>  [mm]\limes_{x\rightarrow\ x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}}=\limes_{x\rightarrow\ x_{0}}f'(G_{x_{0}})=A[/mm]
>  
> dann [mm](x\rightarrow\ x_{0}[/mm] folgt [mm]G_{x_{0}}\rightarrow\ x_{0})[/mm]

Hier wäre [mm] $G_x$ [/mm] statt [mm] $G_{x_0}$ [/mm] zu schreiben, denn nur so erhältst Du  [mm] $G_x\to x_0$ [/mm] für [mm] $x\to x_0\,.$ [/mm]

>  
> Daraus folgt f diffbar in [mm]x_{0}[/mm] und es gilt
> [mm]f'(x_{0})=A=\limes_{x\rightarrow\ x_{0}}[/mm] f'(x)
>  
> Wobei G dieses andere Zeichen ist, so ein großes
> geschwungendes E (keine Ahnung wie es jetzt heißt).

Du meinst wohl xi, also [mm] $\xi\,.$ [/mm]

>  
> Kann man das so tun?? Also ist es schlüssig??

Ja!

Gruß,
Wolfgang

Bezug
                
Bezug
lim f'(x)=f'(x_{0}): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Di 15.01.2013
Autor: silfide

Ja, hast Recht. Danke dir, Wolfgang!

Mia

Bezug
        
Bezug
lim f'(x)=f'(x_{0}): Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Di 15.01.2013
Autor: Marcel

Hallo Silfide,

> Sei [mm]I\subset\IR[/mm] ein Intervall. [mm]f:I\to\IR[/mm] in [mm]x_{0} \in[/mm] I
> stetig. Es exsistiere ein [mm]\delta>0[/mm] so, dass f auf
> [mm]U_{\delta}(x_{0})[/mm] \ [mm]\{x_{0}\}[/mm] differenzierbar ist.
> Exsistiert [mm]\limes_{x\rightarrow\ x_{0}}[/mm] f'(x), so ist f in
> [mm]x_{0}[/mm] differenzierbar und f' ist in [mm]x_{0}[/mm] stetig, d.h.
>  [mm]\limes_{x\rightarrow\ x_{0}} f'(x)=f'(x_{0})[/mm]

Dein Beweis wurde ja schon als richtig erkannt. Alternativ:
Es gilt (o.E. sei stets $x [mm] \in U_\delta(x_0) \setminus \{x_0\}$) [/mm]
[mm] $$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=\lim_{x \to x_0} \frac{\overbrace{f\,'(x)}^{=(f(x)-f(x_0))\,'}}{\underbrace{1}_{=(x-x_0)\,'}}=\lim_{x \to x_0}f\,'(x)$$ [/mm]
nach de l'Hospital, also existiert [mm] $f\,'(x_0)$ [/mm] (weil nach Voraussetzung
[mm] $\lim_{x \to x_0}f\,'(x)$ [/mm] existiert(!)) mit
[mm] $$f\,'(x_0)=\lim_{x \to x_0}f\,'(x)\,.$$ [/mm]

Insbesondere folgt daraus die Stetigkeit von [mm] $f\,'$ [/mm] an der Stelle [mm] $x_0\,.$ [/mm]
Beachte dabei: Wegen der Stetigkeit von [mm] $f\,$ [/mm] an [mm] $x_0$ [/mm] gilt neben [mm] $(x-x_0) \to [/mm] 0$
auch [mm] $(f(x)-f(x_0)) \to 0\$ [/mm] bei $x [mm] \to x_0\,,$ [/mm] so dass de l'Hospital für den
Fall [mm] "$0/0\,$" [/mm] anwendbar ist.

P.S. Der "Witz" an der Sache ist aber, dass ich da 'eigentlich' auch nichts
wirklich anders gemacht habe als Du. Denn de l'Hospital beweist man ja
(etwa) mit dem erweiterten Mittelwertsatz der Differentialrechnung. Und der
erweiterte Mittelwertsatz trägt den Namen "erweitert" ja nicht ohne Grund.
Ich wollte nur drauf hinaus: Man könnte auch de l'Hospital anwenden...
(Zumindest hoffe ich, dass ich da gerade nichts übersehe und mich nicht
doch täusche...)

P.P.S. Du siehst hier übrigens, dass man i.a. nicht auf die Voraussetzung der
Existenz von [mm] $\lim_{x \to x_0}f\,'(x)$ [/mm] verzichten kann - gerade in der Lösung,
bei der man de l'Hospital anwendet!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]