matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenlim bla/(x²-x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - lim bla/(x²-x)
lim bla/(x²-x) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim bla/(x²-x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Sa 27.06.2015
Autor: sinnlos123

warum kann ich bei
[mm] \limes_{x\rightarrow\ 1} \bruch{ \wurzel{x+1}-\wurzel{2x}}{ x^{2} -x} [/mm]

nicht den Bruch um [mm] \bruch{ x^{2} +x}{ x^{2} +x} [/mm] erweitern?
Damit ich unten nur noch >0 stehen habe. (und daher einfach die 1 einsetzen kann)

        
Bezug
lim bla/(x²-x): Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Sa 27.06.2015
Autor: hippias


> warum kann ich bei
>  [mm]\limes_{x\rightarrow\ 1} \bruch{ \wurzel{x+1}-\wurzel{2x}}{ x^{2} -x}[/mm]
>  
> nicht den Bruch um x²+x erweitern?

Doch, das kannst Du machen.

>  Damit ich unten nur noch >0 stehen habe.

Das wirst Du nicht hinbekommen; egal wie Du erweiterst.

> (und daher
> einfach die 1 einsetzen kann)


Bezug
                
Bezug
lim bla/(x²-x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Sa 27.06.2015
Autor: sinnlos123

ja aber (x²-x)*(x²+x) ist [mm] x^{4}+x^{2} [/mm] oder nicht? (richtig:  [mm] x^{4}-x^{2} [/mm] )

edit:
asooo, oh man, ja stimmt, hast recht, wird auch wieder ein potentieller 0 Kandidat.

Bezug
        
Bezug
lim bla/(x²-x): Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 27.06.2015
Autor: M.Rex

Hallo

Erweitere mal den Bruch mit [mm] (\sqrt{x+1}+\sqrt{2x}) [/mm] und bedenke, dass [mm] x^{2}-x=-(x-x^{2})=-x(1-x) [/mm]

Marius

Bezug
                
Bezug
lim bla/(x²-x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Sa 27.06.2015
Autor: sinnlos123

Hey M.Rex!

Vielen Dank für deinen Tip, aber das weiß ich ja schon, habe da nur irgendwie gedacht "boah, das wär ja mal ne Abkürzung" hehe

Aber kennst du vielleicht eine Seite wo die Umformungen von Brüchen aufgelistet sind?
Weil das ist ja noch, naja ich sag mal, zu erraten.
Aber z.b.: x³-a³ umformen muss man schon wissen, oder man kann's eben nicht.


Bezug
                        
Bezug
lim bla/(x²-x): Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 27.06.2015
Autor: leduart

Hallo
allgemeine Regeln für so was gibt es nicht, aber immer mal gut Nullstellen zu bestimmen hier x=a, dann dividieren durch x-a und schon hast du ein Produkt!
Gruss ledum

Bezug
                                
Bezug
lim bla/(x²-x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:49 Sa 27.06.2015
Autor: abakus

In der konkreten Aufgabe hier hilft es, die Erweiterung so durchzuführen, dass die 3. binomische Formel im ZÄHLER angewendet werden kann. 

Bezug
                        
Bezug
lim bla/(x²-x): Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 So 28.06.2015
Autor: Marcel

Hallo,

> Hey M.Rex!
>  
> Vielen Dank für deinen Tip, aber das weiß ich ja schon,
> habe da nur irgendwie gedacht "boah, das wär ja mal ne
> Abkürzung" hehe
>  
> Aber kennst du vielleicht eine Seite wo die Umformungen von
> Brüchen aufgelistet sind?
>  Weil das ist ja noch, naja ich sag mal, zu erraten.
>  Aber z.b.: x³-a³ umformen muss man schon wissen, oder
> man kann's eben nicht.

generalisieren kann man das nicht; aber vielleicht das, was Du hier speziell
meinst, dennoch ein klein wenig:

    [mm] $x^n-a^n=(x-a)*\sum_{k=0}^{n-1} x^k a^{n-k-1}$ [/mm]  

Kontrolle:

    [mm] $(x-a)*\sum_{k=0}^{n-1} x^k a^{n-k-1}=\left(\sum_{k=0}^{n-1} x^{k+1} a^{n-k-1}\right)-\sum_{k=0}^{n-1} x^k a^{n-k}=$ [/mm]

    ... (Indexshift etc.)

    [mm] $=x^n a^0-x^0a^n=x^n-a^n$ [/mm]

Diese Formel hilft oft, wenn etwa $x [mm] \to [/mm] a$ laufen gelassen wird ...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]