matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10lim -> oo einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - lim -> oo einer Funktion
lim -> oo einer Funktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim -> oo einer Funktion: kurze Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:49 Mi 07.03.2012
Autor: underground22

Aufgabe
Gegeben ist die Funktion [mm] f(x)=2x^3+6x^2-8x. [/mm]
Berechnen sie lim->+-oo(unendlich) von f(x).

Mein bisheriger Ansatz:
lim->oo f(x)=oo+oo-oo
lim->-oo f(x)=-oo-oo+oo

Ist das so richtig? Wie geht es dann weiter? Ich habe gelesen, dass man oo-oo gar nicht rechen kann.
Würde mich über baldige Hilfe sehr freuen, wir schreiben morgen die Klassenarbeit.

Vielen Dank im Vorraus
underground22

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lim -> oo einer Funktion: höchste Potenz maßgeblich
Status: (Antwort) fertig Status 
Datum: 16:52 Mi 07.03.2012
Autor: Loddar

Hallo underground,

[willkommenmr] !!


Das hast Du richtig verstanden.: [mm] $\infty-\infty$ [/mm] ist ein unbestimmter Ausdruck.

Bei derartigen ganz-rationalen Termen sind immer nur die Terme mit den höchsten Potenzen maßgeben für [mm] $x\rightarrow\pm\infty$ [/mm] .

Du kannst hier auch mal [mm] $x^3$ [/mm] ausklammern und dann die Grenzwertbetrachtung durchführen.


Gruß
Loddar


Bezug
                
Bezug
lim -> oo einer Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:03 Mi 07.03.2012
Autor: underground22

Aufgabe
Gegeben ist die Funktion [mm] f(x)=2x^3+6x^2-8x [/mm]
Berechnen sie lim->+-oo(unendlich) von f(x).

Vielen Dank für deine Hilfe.
Heißt das dann [mm] \limes_{n\rightarrow\infty}f(x)=\infty [/mm] und [mm] \limes_{n\rightarrow-\infty}=-\infty? [/mm]

Bezug
                        
Bezug
lim -> oo einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Mi 07.03.2012
Autor: MathePower

Hallo underground22,

> Gegeben ist die Funktion [mm]f(x)=2x^3+6x^2-8x[/mm]
>  Berechnen sie lim->+-oo(unendlich) von f(x).
>  Vielen Dank für deine Hilfe.
> Heißt das dann [mm]\limes_{n\rightarrow\infty}f(x)=\infty[/mm] und
> [mm]\limes_{n\rightarrow-\infty}=-\infty?[/mm]  


Statt dem "n" sollte doch ein "x" stehen:

[mm]\limes_{\blue{x}\rightarrow\infty}f(x)=\infty[/mm]

[mm]\limes_{\blue{x}\rightarrow-\infty}f(x)=-\infty[/mm]


Gruss
MathePower

Bezug
                                
Bezug
lim -> oo einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 Mi 07.03.2012
Autor: underground22

Du hast natürlich Recht, ich komme als Neuling noch nicht so ganz perfekt mit den mathematischen Zeichen klar.
Also:
Stimmt jetzt bei [mm] f(x)=3x^3+6x^2-8x [/mm]
[mm] \limes_{x\rightarrow\infty}f(x)=\infty [/mm] und
[mm] \limes_{x\rightarrow-\infty}f(x)=-\infty? [/mm]

Bezug
                                        
Bezug
lim -> oo einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Mi 07.03.2012
Autor: MathePower

Hallo underground22,

> Du hast natürlich Recht, ich komme als Neuling noch nicht
> so ganz perfekt mit den mathematischen Zeichen klar.
>  Also:
>  Stimmt jetzt bei [mm]f(x)=3x^3+6x^2-8x[/mm]
>  [mm]\limes_{x\rightarrow\infty}f(x)=\infty[/mm] und
>  [mm]\limes_{x\rightarrow-\infty}f(x)=-\infty?[/mm]  


Ja.[ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]