matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorielegendre symbol
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - legendre symbol
legendre symbol < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

legendre symbol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mi 14.04.2010
Autor: mafra

meine Frage ist evtl etwas komisch aber ich brauch einfach eine art bestätigung oder berichtigung falls ich total daneben liege.wär cool wenn mir da jemandd von euch helfen könnte.

also: das legendre symbol bildet ja auf 0,-1,1 ab jenachdem ob a quardratischer rest oder nicht bzw null wenn p mein a teilt. fasst man das legendre symbol als funktion auf den restklassen auf bildet es doch von

[mm] \IZ [/mm] / p [mm] \IZ [/mm]  nach {-1,1,0} . das ist doch nun ein körperhomomorphismus aber kein körperisomorphismus oder?

nimmt man nun die 0 aus der Bildmenge, würde das ja auf jeden fall kein körper mehr sein weil {-1,1} ist definitiv kein körper. nimmt man nun aber noch die o aus dem Definitionsbereich erhalte ich ja ne abbildung von den primen restklassen mod p auf {-1,1}. das ist doch aber auch kein Körperhomomo oder isomo sondern lediglich ein Gruppenhomomorphismus meiner meinung nach. Ist da irgendwo ein Fehler?? wäre für jede Hilfe dankbar...

        
Bezug
legendre symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 14.04.2010
Autor: SEcki


> [mm]\IZ[/mm] / p [mm]\IZ[/mm]  nach {-1,1,0} . das ist doch nun ein
> körperhomomorphismus aber kein körperisomorphismus oder

Das ist auch kein Körperhom. ... wie komsmt du drauf? Was willst du erreichen?

> nimmt man nun die 0 aus der Bildmenge,

Soso. Und die Wohldef. in der Urbildmenge?

> würde das ja auf
> jeden fall kein körper mehr sein weil {-1,1} ist definitiv
> kein körper.

Aber es war von Anfang an kein Körperhom.

> nimmt man nun aber noch die o aus dem
> Definitionsbereich erhalte ich ja ne abbildung von den
> primen restklassen mod p auf {-1,1}.

Nein, die Restklasse 0 schwebt im Nirgendwo. Wenn, dann eine Abbildung der Einheiten dortrein.

> das ist doch aber auch
> kein Körperhomomo oder isomo sondern lediglich ein
> Gruppenhomomorphismus meiner meinung nach.

Das dies ein Gruppenhom. wäre, wäre richtig.

> Ist da irgendwo
> ein Fehler??

Ja. Siehe oben.

SEcki

Bezug
                
Bezug
legendre symbol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Mi 14.04.2010
Autor: mafra

hey!
ja z/pz ist doch auf jeden fall ein körper... und ich dachte {-1,0,1 } ist auch ein körper weil mod 3 ist das ja grad {0,1,2}. oder ist meine argumentation grade falsch?

fakt ist dass so eine frage in einer prüfung dran kam und dann jemand geantwortet hat dass wenn die null aus der bildmenge und urbildmenge rausgenommen wird dass es dann ein körperhom. sei. das kann aber mal überhaupt gar nicht sein weil es dann ein gruppenhom. ist von den primen restklassen mod p auf {-1,1}. danke und greeetz

Bezug
                        
Bezug
legendre symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mi 14.04.2010
Autor: SEcki


>  ja z/pz ist doch auf jeden fall ein körper... und ich
> dachte {-1,0,1 } ist auch ein körper weil mod 3 ist das ja
> grad {0,1,2}. oder ist meine argumentation grade falsch?

Das ist ein Körper, kann man so sehen. Aber - es gibt immer noch keinen Körperhom.

> fakt ist dass so eine frage in einer prüfung dran kam und
> dann jemand geantwortet hat dass wenn die null aus der
> bildmenge und urbildmenge rausgenommen wird dass es dann
> ein körperhom. sei. das kann aber mal überhaupt gar nicht
> sein weil es dann ein gruppenhom. ist von den primen
> restklassen mod p auf {-1,1}. danke und greeetz

Ist ja auch ein Gruppenhom. und kein Körperhom. ... und nicht von der primen Restklassengruppe, sondern von deren EInheitengruppe!

SEcki

Bezug
                                
Bezug
legendre symbol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Mi 14.04.2010
Autor: mafra

jo ich meinte ja die einheitengruppen...sorry ich hab mich da etwas flapsig ausgedrückt....ja super dann is mir ja alles klar und die frage oder so wie sie wiedergegeben wurde war einfach irgendiwe fehlerhaft...danke vielmals greeetz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]