matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische Statistikleast squares
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - least squares
least squares < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

least squares: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 Mo 17.07.2006
Autor: rainer9

Aufgabe
Finde die least squares Lösung für x + 2y = 2

Ich kenne least squares normalerweise nur für Probleme der Form [mm] min_{x} [/mm] Ax = b, wobei A eine Matrix ist. Das Problem muß eigentlich leicht sein, da es ja nur eine lineare Gleichung ist (und offensichtlich mit unendlich vielen Lösungen, x = 0 und y=1 z.B.). Ich verstehe aber nicht, was hier genau gemeint ist bzw. welchen Ansatz man braucht.

        
Bezug
least squares: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 17.07.2006
Autor: felixf

Hallo!

> Finde die least squares Lösung für x + 2y = 2
>  Ich keine least squares normalerweise nur für Probleme der
> Form [mm]min_{x}[/mm] Ax = b, wobei A eine Matrix ist. Das Problem
> muß eigentlich leicht sein, da es ja nur eine lineare
> Gleichung ist (und offensichtlich mit unendlich vielen
> Lösungen, x = 0 und y=1 z.B.). Ich verstehe aber nicht, was
> hier genau gemeint ist bzw. welchen Ansatz man braucht.

Du solltest erstmal schreiben, was eine `least squares'-Loesung ueberhaupt sein soll. Ist damit gemeint, dass du eine Loesung $(x, y)$ finden sollst so, dass [mm] $x^2 [/mm] + [mm] y^2$ [/mm] minimal ist?

LG Felix


Bezug
                
Bezug
least squares: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Mo 17.07.2006
Autor: rainer9

Es steht leider nichts weiteres in der Aufgabenstellung.
Wir hatten an anderer Stelle nur die Angabe: "Die least square Lösung für ein lineares System Ax = b ist der kürzeste Vektor x, der [mm] min_{x} [/mm] ||Ax -b|| erfüllt"

Als nächste Aufgabe ist noch angegeben:
Finde die least square lösung für  [mm] \pmat{ 1 & 2 \\ 1 & 2 } [/mm] x = [mm] \vektor{2 \\ 0} [/mm]

Auch hier gibt es keine weiter Angaben, aber es paßt zumindest zu der Form in der Vorlesung und hilft vielleicht aufzuklären, was gemeint ist?


Bezug
                
Bezug
least squares: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Mo 17.07.2006
Autor: rainer9

Es ist wohl richtig, daß x² + y² minimal sein muß, denn wenn es um den kürzesten Vektor geht (und (x, y) als der Lösungsvektor gilt), dann ist die Länge des Vektors ja gerade |(x,y)| = sqrt(x²+y²).
Aber wie geht es jetzt weiter?

Bezug
        
Bezug
least squares: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Mo 17.07.2006
Autor: felixf

Hallo!

> Finde die least squares Lösung für x + 2y = 2
>  Ich kenne least squares normalerweise nur für Probleme der
> Form [mm]min_{x}[/mm] Ax = b, wobei A eine Matrix ist. Das Problem
> muß eigentlich leicht sein, da es ja nur eine lineare
> Gleichung ist (und offensichtlich mit unendlich vielen
> Lösungen, x = 0 und y=1 z.B.). Ich verstehe aber nicht, was
> hier genau gemeint ist bzw. welchen Ansatz man braucht.

Du willst also $x + 2 y = 2$ so loesen, dass [mm] $x^2 [/mm] + [mm] y^2$ [/mm] minimal ist. Anders geschrieben: Du willst [mm] $x^2 [/mm] + [mm] y^2$ [/mm] minimieren unter der Nebenbedingung $x + 2 y = 2$.

Die Nebenbedingung umgeformt ergibt $x = 2 (1 - y)$; einsetzen in [mm] $x^2 [/mm] + [mm] y^2$ [/mm] ergibt $4 (1 - [mm] y)^2 [/mm] + [mm] y^2$. [/mm] Das ist ein quadratischer Ausdruck in $y$, den du mit ganz gewoehnlichen Methoden (sprich: Kurvendiskussion) minimieren kannst...

LG Felix



Bezug
                
Bezug
least squares: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:56 Mo 17.07.2006
Autor: rainer9

danke, damit ist die erste aufgabe wohl geklärt. Wenn ich es bei der 2. mit der Matrix genau so mache, erhalte ich aber zwei widersprüchliche Nebenbedingungen:
1. [mm] x_{1}+2x_{1} [/mm] = 2
2. [mm] x_{1}+2x_{1} [/mm] = 0
Jetzt kann ich wohl nicht mehr einfachen einsetzen. Oder sollte ich einfach für beide Gleichungen das Ergebnis berechnen und dann als Näherung mitteln (oder das Minimum wählen)?

Bezug
                        
Bezug
least squares: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 18.07.2006
Autor: felixf

Hallo Rainer!

> danke, damit ist die erste aufgabe wohl geklärt. Wenn ich
> es bei der 2. mit der Matrix genau so mache, erhalte ich

Du darfst es nicht genauso machen, da hier das Gleichungssystem nicht loesbar ist! Das hast du ja selber schon gesehen:

> aber zwei widersprüchliche Nebenbedingungen:
>  1. [mm]x_{1}+2x_{1}[/mm] = 2
>  2. [mm]x_{1}+2x_{1}[/mm] = 0

Hier musst du also erstmal $||A x - b||$ moeglichst klein waehlen, und dann das (normmaessig) kleinste solche $x$ waehlen, fuer welches $||A x - b||$ minimal ist.

Was du also machen musst: Du schaust dir erstmal an, wann der Vektor [mm] $(x_1 [/mm] + 2 [mm] x_2 [/mm] - 2, [mm] x_1 [/mm] + 2 [mm] x_1)$ [/mm] minimal wird. Die Menge aller $x$, fuer die dies minimal ist (also von minimaler Laenge ist), bezeichne mit $M$. Dann suchst du das $x [mm] \in [/mm] M$ so, dass $x$ minimal ist.

Es gibt uebrigens auch eine Moeglichkeit, dies mit linearer Algebra zu loesen (indem man passende Orthogonalraeume anschaut). Wenn ihr das nicht hattet, solltest du das ``von Hand'' (wie gerade beschrieben) machen...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]