matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationlagrange restglied
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - lagrange restglied
lagrange restglied < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lagrange restglied: bestimme den restterm
Status: (Frage) beantwortet Status 
Datum: 08:58 Di 30.01.2007
Autor: Annalysis

Aufgabe
Geben Sie den Restterm von Lagrange für [mm] sin(x)-(x-1/6x^3+1/120 x^5) [/mm]

hallo!
ich habe einige problemchen mit dieser aufgabe. muss man nicht eigentlich um diesen restterm zu bestimmenerstmal das taylorpolynom ausrechnen? und geht das denn nicht eigentlich nur für ein bestimmtes x?
wäre euch für jede antwort sehr dankbar, viele grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
lagrange restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Di 30.01.2007
Autor: angela.h.b.


> Geben Sie den Restterm von Lagrange für
> [mm]sin(x)-(x-1/6x^3+1/120 x^5)[/mm]
>  hallo!
>  ich habe einige problemchen mit dieser aufgabe. muss man
> nicht eigentlich um diesen restterm zu bestimmenerstmal das
> taylorpolynom ausrechnen? und geht das denn nicht
> eigentlich nur für ein bestimmtes x?

Hallo,

Du kannst doch schreiben: für das n-te Taylorpolynom lautet das Lagrangesche  Restglied: ...   für ein [mm] \theta [/mm] zwischen x und dem Entwicklungspunkt a.

Du brauchst dafür ja jeweils die (n+1)-te Ableitung der Funktion.

Ziemlich bald bist Du das Polynom los, danach wiederholt sich alles.

Gruß v. Angela

Bezug
                
Bezug
lagrange restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Di 30.01.2007
Autor: Annalysis

danke schonmal für die schnelle antwort, aber leider weiß ich auch nicht genau, wie ich überhaupt das taylorpolynom zu dieser funktion bilde...und was ich dann tun muss um an das restglied zu kommen...
könntest du mir das vll nochmal genauer erklären?

Bezug
                        
Bezug
lagrange restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Di 30.01.2007
Autor: angela.h.b.


> aber leider weiß
> ich auch nicht genau, wie ich überhaupt das taylorpolynom
> zu dieser funktion bilde...

Das ist natürlich ein starkes Stück!

Das Taylorpolynom mußt Du ja wie gesagt gar nicht ausrechnen hierfür.
Aber natürlich mußt Du wissen, wie es geht...
Das was ich Dir erklären könnte, steht in jedem Analysisbuch, und schön übersichtlich auch

[]hier.

Guck Dir dort erstmal an, wie diese Reihen gebastelt werden, das Kochrezept. Du brauchst die Ableitungen der Funktion dafür.

Dann geh zu "Formen des Restgliedes" oder so ähnlich. Dort findest Du das Lagrangesche.

Es lohnt sich auch, weiter unten zu schauen. Dort ist die Sinusfunktion mit ihren ersten Taylorpolynomen aufgezeichnet.
Da wirst Du verstehen, wofür man die Taylorentwicklung gebrauchen kann: um Funktionen anzunähern z.B.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]