matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationl´hôpital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - l´hôpital
l´hôpital < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

l´hôpital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mi 06.07.2011
Autor: BlackMath

Aufgabe
[mm] \limes_{x\rightarrow\infty}=\bruch{e^{x}^{2}}{3x^{2}} [/mm]

Hi,
bin mir bei l´hôpital noch nicht ganz sicher mit der Berechnung für unendlich. Also folgendermaßen bin ich vorgegangen:
1.Nenner geht gegen unendlich
2.Zähler geht gegen unendlich

3. ableiten

[mm] \limes_{x\rightarrow\infty}=\bruch{e^{x}^{2}}{3x^{2}} [/mm]
[mm] \limes_{x\rightarrow\infty}=\bruch{2e^{x}^{2}x}{6x} [/mm]

immernoch keine treffbare Aussage, da beides noch gegen unendlich:

[mm] \limes_{x\rightarrow\infty}=\bruch{2e^{x}^{2}\cdot(2x^{2}+1)}{6} [/mm]

Aber wie komme ich denn nun auf ein brauchbares Ergebnis? Ich komme iwie nicht mit der e-Funktion zurecht in dem Bsp.
Im vorraus besten Dank.

        
Bezug
l´hôpital: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mi 06.07.2011
Autor: fred97


> [mm]\limes_{x\rightarrow\infty}=\bruch{e^{x}^{2}}{3x^{2}}[/mm]
>  Hi,
>  bin mir bei l´hôpital noch nicht ganz sicher mit der
> Berechnung für unendlich. Also folgendermaßen bin ich
> vorgegangen:
>  1.Nenner geht gegen unendlich
> 2.Zähler geht gegen unendlich
>  
> 3. ableiten
>  
> [mm]\limes_{x\rightarrow\infty}=\bruch{e^{x}^{2}}{3x^{2}}[/mm]
>  [mm]\limes_{x\rightarrow\infty}=\bruch{2e^{x}^{2}x}{6x}[/mm]
>  
> immernoch keine treffbare Aussage, da beides noch gegen
> unendlich:
>  
> [mm]\limes_{x\rightarrow\infty}=\bruch{2e^{x}^{2}\cdot(2x^{2}+1)}{6}[/mm]

Hier siehst Du doch, dass der Grenzwert = [mm] \infty [/mm] ist !

FRED

>  
> Aber wie komme ich denn nun auf ein brauchbares Ergebnis?
> Ich komme iwie nicht mit der e-Funktion zurecht in dem
> Bsp.
>  Im vorraus besten Dank.


Bezug
        
Bezug
l´hôpital: früher fertig
Status: (Antwort) fertig Status 
Datum: 11:20 Mi 06.07.2011
Autor: Roadrunner

Hallo BlackMath!


> [mm]\limes_{x\rightarrow\infty}=\bruch{e^{x}^{2}}{3x^{2}}[/mm]

Das Gleichheitszeichen hinter dem Limes ist absolut überflüssig, um nicht zu sagen: falsch.


>  [mm]\limes_{x\rightarrow\infty}=\bruch{2e^{x}^{2}x}{6x}[/mm]
>  
> immernoch keine treffbare Aussage,

Na hoppla! Du kannst doch durch $2*x_$ kürzen und bist dann quasi am Ziel.


Gruß vom
Roadrunner


PS: "im voraus" bitte nur mit einem "r".


Bezug
                
Bezug
l´hôpital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Mi 06.07.2011
Autor: BlackMath

Hi,
danke.
Okay die Gleichheitszeichen sind das etwas fail am Platze.

Also im Prinzip ist es ja denke ich egal, welchen weg ich gehe oder?
Mit der 2ten Ableitung bekomme ich dann raus, das das ganze gegen unendlich geht, genauso wie wenn ich in der ersten durch 2x kürze.

Mit 2x gekürzt(der Vollständigkeit halber):

[mm] \limes_{x\rightarrow\infty} \bruch{2e^{x}^{2}x}{6x} [/mm]
                                  [mm] \gdw \bruch{e^{x}^{2}}{3} [/mm]

So mal noch eine andere Aufgabe, mal sehen obs klappt:
[mm] \limes_{x\rightarrow 0}(\bruch{1}{sin(x)}-\bruch{1}{x}) [/mm]
[mm] \gdw \bruch{x-sin(x)}{x*sin(x)} [/mm]
[mm] \gdw \bruch{1-cos(x)}{sin(x)+x\cdot cos(x)} [/mm]
[mm] \gdw \bruch{sin(x)}{2 \cdot cos(x) +x \cdot sin(x)} [/mm] = [mm] \bruch{0}{2}= [/mm] 0 ?


Bezug
                        
Bezug
l´hôpital: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Mi 06.07.2011
Autor: Diophant

Hallo,

bis auf deine abenteurliche Schreibweise hast du richtig gerechnet. Verwende doch einfach das Gleichheitszeichen und schreibe jede Version als Grenzwert:

[mm]\limes_{x\rightarrow 0}(\bruch{1}{sin(x)}-\bruch{1}{x})[/mm]
[mm]=\limes_{x\rightarrow 0}\bruch{x-sin(x)}{x*sin(x)}[/mm]
[mm]=\limes_{x\rightarrow 0}\bruch{1-cos(x)}{sin(x)+x\cdot cos(x)}[/mm]
[mm]=\limes_{x\rightarrow 0}\bruch{sin(x)}{2 \cdot cos(x) +x \cdot sin(x)}[/mm]
[mm] =\bruch{0}{2} [/mm]
=0

Gruß, Diophant

Bezug
                        
Bezug
l´hôpital: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Mi 06.07.2011
Autor: schachuzipus

Hallo BM,


> Hi,
>  danke.
>  Okay die Gleichheitszeichen sind das etwas fail am
> Platze.
>  
> Also im Prinzip ist es ja denke ich egal, welchen weg ich
> gehe oder?
>  Mit der 2ten Ableitung bekomme ich dann raus, das das
> ganze gegen unendlich geht, genauso wie wenn ich in der
> ersten durch 2x kürze.

Ja, vereinfachen ist immer gut, das erspart oft mühseliges Mitschleppen von Termen oder gar eine weitere Ableitung ...

>  
> Mit 2x gekürzt(der Vollständigkeit halber):
>  
> [mm]\limes_{x\rightarrow\infty} \bruch{2e^{x}^{2}x}{6x}[/mm]
> [mm]\gdw \bruch{e^{x}^{2}}{3}[/mm]

Das stimmt bis auf das grauenhafte Rechenzeichen ... (siehe Diophants Antwort dazu)

>
> So mal noch eine andere Aufgabe, mal sehen obs klappt:
>  [mm]\limes_{x\rightarrow 0}(\bruch{1}{sin(x)}-\bruch{1}{x})[/mm]
>  
> [mm]\gdw \bruch{x-sin(x)}{x*sin(x)}[/mm]
>  [mm]\gdw \bruch{1-cos(x)}{sin(x)+x\cdot cos(x)}[/mm]
>  
> [mm]\gdw \bruch{sin(x)}{2 \cdot cos(x) +x \cdot sin(x)}[/mm] =

Vorzeichenfehler im Nenner, richtig: [mm]2\cos(x)\red{-}x\sin(x)[/mm] - ändert aber an der Grenzbetrachtung nix!

> [mm]\bruch{0}{2}=[/mm] 0 ?
>  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]