matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenkurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - kurvendiskussion
kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: asymptote und fortsetzungsfkt
Status: (Frage) beantwortet Status 
Datum: 18:24 Di 27.03.2007
Autor: slice

hallo!
es ist bei einer aufgabe die fkt.
f(x) = [mm] \bruch{x^{3}+x²}{x²+3x+2} [/mm]
gegeben
die definitionslücken sind -1 und -2.
dann sollte eine stetige fortsetzungsfunktino g gefunden werden, mit der man auch weiterrechnen darf bei den folgenden aufgaben.
dazu hab ich die funktion

g: [mm] \bruch{x²}{x+2} [/mm] für D=R ohne -1 und -2
und 1 für x=-1
genommen.

meine 1. frage ist:
hääte man da auch die normale funktion vom anfang sthen lassen können, also [mm] \bruch{x^{3}+x²}{x²+3x+2} [/mm] für D=R ohne -1 und -2
und 1 für x=-1

oder geht das nicht?


so, danach sollten alle asymptoten rausgesucht werden.
jetzt habe ich zuerst
[mm] \limes_{x\rightarrow\infty} \bruch{x²}{x+2} [/mm]
berechnet.
im graphen sieht man ja, dass sich die fkt. bei + und - unendlich einer geraden annähert.
aber ich weiß noch nciht genau wie man jetzt auf diese gerade kommt bzw wieso das so ist.. ich kenne wohl die rechnung, bzw regel

[mm] \limes_{x\rightarrow\infty} [/mm] |f(x)-(mx+t)|=0
für schräge asymptoten, aber ich weiß trotzdem irgendwie nicht so richtig, wie ich von dieser formel auf die gleichung der asymptote komme...

        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Di 27.03.2007
Autor: leduart

Hallo
> hallo!
>  es ist bei einer aufgabe die fkt.
>   f(x) = [mm]\bruch{x^{3}+x²}{x²+3x+2}[/mm]
>  gegeben
>  die definitionslücken sind -1 und -2.
>  dann sollte eine stetige fortsetzungsfunktino g gefunden
> werden, mit der man auch weiterrechnen darf bei den
> folgenden aufgaben.
>  dazu hab ich die funktion
>  
> g: [mm]\bruch{x²}{x+2}[/mm] für D=R ohne -1 und -2
>  und 1 für x=-1
>  genommen.

beinahe richtig, aber die ist jetzt D=R ohne -2, denn die Unstetigkeit bei 1 hast du ja beseitigt.

> meine 1. frage ist:
>  hääte man da auch die normale funktion vom anfang sthen
> lassen können, also [mm]\bruch{x^{3}+x²}{x²+3x+2}[/mm] für D=R ohne
> -1 und -2
>  und 1 für x=-1
>  
> oder geht das nicht?

Das geht, aber der Beweis, dass das bei -1 stetig ist kommt erst mit der Umformung.

>
> so, danach sollten alle asymptoten rausgesucht werden.
>  jetzt habe ich zuerst
> [mm]\limes_{x\rightarrow\infty} \bruch{x²}{x+2}[/mm]
>  berechnet.
>  im graphen sieht man ja, dass [mm]\bruch{x²}{x+2}[/mm] die schräge
> asymptote schon ist. aber woher weiß ich denn, wenn ich nur
> den bruch da stehen habe, ob ich schon weit genug aufgelöst
> habe und den bruch so als asymptote stehen lassen kann,

Nein, du solltest noch durch x "kuerzen"
also [mm] \bruch{x}{1+\bruch{2}{x}} [/mm]
dann x gegen [mm] \pm\infty [/mm]  2/x gegen 0 also f(x)gegen g(x)=x
Die Assymptote ist ne Gerade!

> oder ob ich noch große zahlen einsetzen muss, denn dann
> würde als grenzwert ja [mm]\infty[/mm] rauskommen.. hoffe die 2.
> frage versteht überhaupt wer....

die Assymptotenfkt durch einsetzen von grossen Zahlen zu finden klappt nur, wenn man ne parallele zur x-achse als Assymptote hat. sonst musst du es wie oben gezeigt machen.
(die Idee, wie man findet, was man sucht: fuer grosse x ist kaum ein Unterschied zwischen x und x+Zahl, also hat man ungefaehr [mm] x^2/x=x. [/mm] Das dividieren durch x in Z und N ist nur, damit man es schoener beweisen kann.
Gruss leduart

Bezug
                
Bezug
kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Di 27.03.2007
Autor: slice

hmm aber die nächste aufgabe ist noch, dass der graph von Gf , die y-achse, die schräge asymptote (y=x-2) und die gerade x=4 eine fläche einschließen, die man berechnen soll.. wie kommt man da denn dann auf die schiefe asymptote?

Bezug
                        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 27.03.2007
Autor: leduart

Hallo
die Gerade y=x-2 ist garantiert kein Assymptote zu der Kurve.
aber sie ist ja parallel dazu.
Du kannst jetzt die Flaeche wie angegeben eben nicht zw. Assymptote sondern Gerade ausrechnen, oder zw. wirklicher Assymptote y=x, oder beides, beides zu machen ist fast kein zusaetzlicher Rechenaufwand!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]