matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenkugelsymmetrisches Vektorfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - kugelsymmetrisches Vektorfeld
kugelsymmetrisches Vektorfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kugelsymmetrisches Vektorfeld: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:27 So 27.06.2010
Autor: Unk

Aufgabe
Gegeben sei ein kugelsymmetrisches Vektorfeld [mm] F=q\vec{r}/r^{3}. [/mm] Für r>0 gelte [mm] \nabla [/mm] F=0, sowie [mm] \nabla\times F=\vec{0}. [/mm] Es sei in Kugelkoordinaten folgendes [mm] \vec{C} [/mm] definiert: [mm] \vec{C}=q\frac{1-\cos\theta}{r\sin\theta}\vec{e}_{\phi}. [/mm]

(i) In welchem Teilraum von [mm] G=\{\vec{r}\in\mathbb{R}^{3}|r>0\}ist \vec{C} [/mm] wohldefiniert?

(ii) Weisen Sie nach, dass F als [mm] F=\nabla\times\vec{C} [/mm] geschrieben werden kann.

(iii) Setzt man [mm] F=\nabla\times\vec{C} [/mm] in das Flußintegral [mm] \Phi=\oint_{r=R}d\vec{A}\cdot [/mm] F ein, kann [mm] \Phi [/mm] laut dem Satz von Stokes als Linienintegral ausgedrückt werden. Dabei wird um den Punkt der Oberfläche integriert, bei dem [mm] \vec{C} [/mm] singulär ist. Man zeige, dass der richtige Wert [mm] \Phi=4\pi [/mm] q sich auf dieser Weise wiederherstellen lässt.

Hallo,

bei (a) hab ich mir einfach gedacht, dass ja [mm] r\sin\theta\neq0 [/mm] sein muss, d.h. [mm] \theta\in(0,\pi). [/mm] Richtig?

Bei (b) habe ich mir zuerst mal den Nabla Operator in Kugelkoordinaten gesucht und bin dann zu folgender Rechnung gekommen:

[mm] \nabla=\partial_{r}\vec{e}_{r}+\frac{1}{r}\partial_{\theta}\vec{e}_{\theta}+\frac{1}{r\sin\theta}\partial_{\phi}\vec{e}_{\phi}. [/mm]

Dann:
[mm] \nabla\times [/mm] C  =  [mm] \begin{pmatrix}\partial_{r}\\ \frac{1}{r}\partial_{\theta}\\ \frac{1}{r\sin\theta}\partial_{\phi}\end{pmatrix}\times\begin{pmatrix}0\\ 0\\ q\frac{1-\cos\theta}{r\sin\theta}\end{pmatrix}\\ [/mm]
  =  [mm] \begin{pmatrix}0\\ -q\frac{-1+\cos\theta}{r\text{\texttwosuperior}\sin\theta}\\ 0\end{pmatrix} [/mm]

Wie komme ich jetzt aber dazu, dass das gleich F ist? Ich wollte [mm] \vec{r} [/mm] in Kugelkoordinaten angeben, also [mm] \vec{r}=(r\cos\theta\sin\phi,r\sin\theta\sin\phi,r\cos\theta), [/mm] aber dann komme ich ja nie auf das Ergebnis meiner Rechnung da oben. Was muss ich anders machen?

Um (iii) kümmere ich mich später dann.

        
Bezug
kugelsymmetrisches Vektorfeld: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 29.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]