matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigeskürzester Weg in 3D
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - kürzester Weg in 3D
kürzester Weg in 3D < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kürzester Weg in 3D: Knobelaufgabe...
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 12.04.2006
Autor: Bastiane

Aufgabe
[Dateianhang nicht öffentlich]


Hallo!

Ich bin mir nicht so ganz sicher, ob obige Aufgabe hier in dieses Forum gehört, aber ich würde sie mal hier einordnen. Eigentlich stammt sie als Knobelaufgabe von unserem 1. Übungszettel in "Bewegungsplanung für Roboter".

Zuerst dachte ich, es sei der kürzeste Weg, aber dann wäre die Aufgabe irgendwie zu einfach gewesen. Außerdem bin ich dann auf die Idee gekommen, dass es evtl. kürzer sein könnte, wenn die Spinne nicht die Diagonale geht, sondern so ein bisschen schräg, dass sie irgendwo mitten auf einer der beiden Kanten auskommt. Dann habe ich mir überlegt, dass man das doch eigentlich einfach als Extremwertaufgabe berechnen können müsste. Und zwar habe ich die Zeichnung mal folgendermaßen abstrahiert:

[Dateianhang nicht öffentlich]

Ach ja, und der Einfachheit halber rechne ich mal mit einem Würfel der Kantenlänge 1.

Dann beträgt der oben eingezeichnete Weg: [mm] $\wurzel{2}+1\approx [/mm] 2,41$ .

Nun setze ich Punkt [mm] A^{\star} [/mm] irgendwo auf die Kante, wie gerade eben eingezeichnet. Dann beträgt die Strecke [mm] \overrightarrow{AA^{\star}}=\left|\vektor{1\\x\\1}\right| [/mm] und die Strecke [mm] \overrightarrow{A^{\star}B}=\left|\vektor{0\\1-x\\-1}\right|. [/mm]

Also zusammen: [mm] \wurzel{2+x^2}+\wurzel{1+(1-x)^2}. [/mm] Diesen Graphen habe ich mir mal zeichnen lassen, und in der Zeichnung liegt der Tiefpunkt ungefähr bei x=0,5:

[Dateianhang nicht öffentlich]

Als Ableitung hat mir mein Computer da etwas ziemlich ekliges ausgerechnet, und einen Tiefpunkt konnte er davon gar nicht erst berechnen. [kopfschuettel]

Da ich dazu im Moment auch zu faul bin, wollte ich erstmal fragen, ob das soweit richtig ist, und ob jemand weiß, ob der Tiefpunkt wirklich genau bei 0,5 liegt oder nur knapp daneben. Ich hatte mal ein paar andere Punkte eingesetzt, wo dann eine längere Strecke bei rauskam, aber wenn ich mir den Graphen genau ansehe, bin ich doch am Zweifeln, ob wirklich der Tiefpunkt bei x=0,5 liegt...

Viele Grüße
Bastiane
[cap]




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 3 (Typ: png) [nicht öffentlich]
        
Bezug
kürzester Weg in 3D: kleiner Fehler(?)
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 12.04.2006
Autor: Loddar

Hallo Bastiane!


Muss es nicht heißen [mm]\overrightarrow{AA^{\star}}=\left|\vektor{1\\x\\ \red{0}}\right|[/mm] ?

Schließlich bleibt ja die z-Koordinate unverändert, wenn die Spinne sich auf dem Deckel des Würfels bewegt.


Gruß
Loddar


Bezug
                
Bezug
kürzester Weg in 3D: Hast (natürlich) Recht :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Mi 12.04.2006
Autor: Bastiane

Hallo Loddar!

Du hast Recht. Irgendwann vorher hatte ich das auch mal so auf meinem Schmierzettel gehabt, aber da war irgendwas anderes falsch, und dann habe ich diesen Fehler wohl mit eingebaut. Naja, jedenfalls sieht das Ganze dann ja so aus:

[mm] f(x)=\wurzel{1+x^2}+\wurzel{1+(1-x)^2} [/mm] und ich meine hieraus schon zu sehen, dass der Tiefpunkt wirklich bei x=0,5 liegt.

[Dateianhang nicht öffentlich]

Mein Computer berechnet mir dann allerdings immer noch keinen Tiefpunkt. :-( Aber vielleicht probiere ich es selber später nochmal, ist ja nicht so wichtig und vor allem nicht dringend. :-)

Viele Grüße
Bastiane
[cap]


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
kürzester Weg in 3D: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Mi 12.04.2006
Autor: Bluemoon

Deine Lösung ist völlig korrekt, und MEIN Computer errechnet mir auch den korrekten Minimalwert von exakt 0.5.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
kürzester Weg in 3D: Exakter Wert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Mi 12.04.2006
Autor: Loddar

Hallo Bastiane!


Mit meiner o.g. Korrektur erhalte ich dann als Funktion $d(x) \ = \ [mm] \wurzel{1+x^2}+\wurzel{x^2-2x+2}$ [/mm] und der zugehörigen Ableitung:

$d'(x) \ = \ [mm] \bruch{x}{\wurzel{1+x^2}}+\bruch{x-1}{\wurzel{x^2-2x+2}}$ [/mm]


Hier ergibt sich dann als (exakte) Nullstelle der Ableitung: [mm] $x_E [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm]
(und das ist zu Fuß bzw. per Hand gerechnet [lehrer] )


(Den Nachweis des hinreichenden Kriteriums über die 2. Ableitung habe ich mir mal aus Bequemlichkeitsgründen verkniffen ;-) ...).


Gruß
Loddar


Bezug
        
Bezug
kürzester Weg in 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mi 12.04.2006
Autor: riwe

[mm] s=\sqrt{5} [/mm] wie gehabt, was man am einfachsten sieht, wenn man das ganze "platt drückt".
werner

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
        
Bezug
kürzester Weg in 3D: Danke an euch alle. :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Mi 12.04.2006
Autor: Bastiane

Hallo ihr lieben Helfer! :-)

Vielen Dank für die ganzen Antworten und Mitteilungen - vor allem die Idee mit dem Plattdrücken finde ich toll. [super] [huepf]

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]