kubische Splines < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | berechnen sie zu
f(x) = [mm] \bruch{1}{1+x^2} [/mm] , x [mm] \in [/mm] [-5,5] die kubische Spline Interpolierende u mit u''(-5) = u''(5) = 0 zu den Stützstellen [mm] x_j [/mm] = -5+2j (j=0,...,5) |
huhu,
ich hab ehrlich keine Ahnung wie man das macht, ich find auch im inet keine einfach beispielaufgabe dazu, die so ähnlich aufgebaut ist wie die hier.
Ich kenn mich aus mit Newton und Lagrange.
Kann mir jemand die Vorgehensweise bitte erklären? Dankö.
|
|
|
|
> berechnen sie zu
>
> f(x) = [mm]\bruch{1}{1+x^2}[/mm] , x [mm]\in[/mm] [-5,5] die kubische Spline
> Interpolierende u mit u''(-5) = u''(5) = 0 zu den
> Stützstellen [mm]x_j[/mm] = -5+2j (j=0,...,5)
> huhu,
>
> ich hab ehrlich keine Ahnung wie man das macht, ich find
> auch im inet keine einfach beispielaufgabe dazu, die so
> ähnlich aufgebaut ist wie die hier.
> Ich kenn mich aus mit Newton und Lagrange.
>
> Kann mir jemand die Vorgehensweise bitte erklären? Dankö.
Hallo Evelyn,
die gesuchte Spline-Funktion setzt sich aus 5 kubischen
Funktionen [mm] f_i [/mm] zusammen, nämlich eine auf jedem der
5 Teilintervalle. Beispielsweise gilt die Funktion [mm] f_4 [/mm] auf
dem vierten Teilintervall [1 ... 3] .
Jede der 5 kubischen Funktionen hat zunächst einmal
4 noch offene Parameter. Insgesamt haben wir also
20 Unbekannte. So brauchen wir auch 20 Bedingungen,
um ein Gleichungssystem aufzustellen.
Man verlangt natürlich, dass die Funktion [mm] f_4 [/mm] an den
Stützstellen (Randstellen des Definitionsbereiches von [mm] f_4),
[/mm]
also bei [mm] x_3 [/mm] und [mm] x_4 [/mm] , mit der gegebenen Funktion f
übereinstimmt. Man könnte auch verlangen, dass [mm] f_4' [/mm] mit
f' an diesen Stellen übereinstimmt.
Üblicherweise verlangt man aber bei eigentlichen Splines
an den Nahtstellen nebst dem Einhalten der Funktions-
werte der Originalfunktion nur, dass die Werte der ersten
Ableitungen der beiden Funktionen, welche da "vernäht"
werden, übereinstimmen. Für [mm] f_4 [/mm] ergäben sich daraus
nebst [mm] f_4(x_3)=f(x_3) [/mm] und [mm] f_4(x_4)=f(x_4) [/mm] die weiteren
Bedingungen [mm] f_4'(x_3)=f_3'(x_3) [/mm] und [mm] f_4'(x_4)=f_5'(x_4) [/mm] .
Damit haben wir für [mm] f_4 [/mm] die notwendigen 4 Gleichungen.
Analog geht es für die Teilfunktionen [mm] f_2 [/mm] und [mm] f_3 [/mm] . Für die
Funktionen [mm] f_1 [/mm] und [mm] f_5 [/mm] (in den Intervallen am Rand)
verlangt man hier (um auf die korrekte Anzahl von
Gleichungen zu kommen) [mm] f_1''(x_0)=0 [/mm] und [mm] f_5''(x_5)=0 [/mm] .
LG , Al-Chwarizmi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:30 Fr 29.03.2013 | Autor: | fred97 |
> berechnen sie zu
>
> f(x) = [mm]\bruch{1}{1+x^2}[/mm] , x [mm]\in[/mm] [-5,5] die kubische Spline
> Interpolierende u mit u''(-5) = u''(5) = 0 zu den
> Stützstellen [mm]x_j[/mm] = -5+2j (j=0,...,5)
> huhu,
>
> ich hab ehrlich keine Ahnung wie man das macht, ich find
> auch im inet keine einfach beispielaufgabe dazu, die so
> ähnlich aufgebaut ist wie die hier.
Ehrlich ? Ich wurde sofort fündig:
http://www-user.tu-chemnitz.de/~uro/teaching/SS2002-numerik/misc/Splines.pdf
Beispiel 2.3.
FRED
> Ich kenn mich aus mit Newton und Lagrange.
>
> Kann mir jemand die Vorgehensweise bitte erklären? Dankö.
|
|
|
|