matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenkritische punkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - kritische punkte
kritische punkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kritische punkte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:06 Sa 26.06.2010
Autor: rml_

Aufgabe
Es soll die Funktion f : [mm] R^2 [/mm] ->R; f (x; y) = [mm] (y-3x^2)(y-x^2) [/mm] untersucht werden.
(a) Bestimmen Sie alle kritischen Punkte von f .

hallo:),

gradient=0:

[mm] f_x(x,y)=x(12x^2 [/mm] + 8y)
[mm] f_y(x,y)=y=2x^2 [/mm]

y in [mm] f_x(x,y)-> x^3(12-16) [/mm] -> x=0 , y=0

kann es sein dass dies die einzigen nullstellen sind? wenn ja die sind dann 3-fach oder?= sattelpunkt?

danke

        
Bezug
kritische punkte: partielle Ableitungen falsch
Status: (Antwort) fertig Status 
Datum: 19:09 Sa 26.06.2010
Autor: Loddar

Hallo rml_!


Nein, das kann nicht stimmen. Ich habe auch andere partielle Ableitungen erhalten. Bitte rechne vor ...


Gruß
Loddar


Bezug
                
Bezug
kritische punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 26.06.2010
Autor: rml_

ok

[mm] f(x,y)=(y-3x^2)(y-x^2) [/mm]
[mm] f_x(x,y)=-6x(y-x^2) [/mm] + [mm] (y-3x^2)(-2x) [/mm]
[mm] f_y(x,y)=1*(y-x^2) [/mm] + [mm] (y-3x^2)*1 [/mm]

zusammenfassen:
[mm] f_x(x,y)= -6xy+6x^3 [/mm] + [mm] (-2xy)(6x^3)= 12x^3 [/mm] - [mm] 8xy=x(12x^2 [/mm] - 8y)
[mm] f_y(x,y)= [/mm] y - [mm] x^2 [/mm] + y [mm] -3x^2= 2y-4x^2 [/mm] (nach y umstelle und in [mm] f_x [/mm] einsetzten)

wo ist der fehelr?

Bezug
                        
Bezug
kritische punkte: nun richtig
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 26.06.2010
Autor: Loddar

Hallo!


Nun stimmen die partiellen Ableitungen. Vielleicht meintest Du auch vorhin dasselbe, hattest es aber sehr schlampig aufgeschrieben.


Gruß
Loddar


Bezug
                                
Bezug
kritische punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 26.06.2010
Autor: rml_

ok danke, also ist (0,0) die einzige 3-fache nullstelle des gradienten?
denn wenn ich [mm] 2y-4x^2=0 ->y=2x^2 [/mm] in [mm] f_x [/mm] einsetzte dann:

[mm] x(12x^2-8(2x^2))= x(12x^2 -16x^2)=x^3(12-16) =x^3 [/mm] muss dann null sein wieder in [mm] y=2x^2 [/mm] einsetzten ->y =0

Bezug
                                        
Bezug
kritische punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Sa 26.06.2010
Autor: MathePower

Hallo rml_,

> ok danke, also ist (0,0) die einzige 3-fache nullstelle des
> gradienten?


So ist es.


>  denn wenn ich [mm]2y-4x^2=0 ->y=2x^2[/mm] in [mm]f_x[/mm] einsetzte dann:
>  
> [mm]x(12x^2-8(2x^2))= x(12x^2 -16x^2)=x^3(12-16) =x^3[/mm] muss dann
> null sein wieder in [mm]y=2x^2[/mm] einsetzten ->y =0


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]