matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenkritische Punkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - kritische Punkte
kritische Punkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kritische Punkte: Übung
Status: (Frage) beantwortet Status 
Datum: 12:17 So 21.07.2013
Autor: ellegance88

Aufgabe
Bestimmen Sie die kritischen Punkte von [mm] f(x,y)=x^3y-3xy+y^2+1 [/mm] und deren Typ.

Hallo,

die partiellen Ableitungen:

[mm] \bruch{df}{dx} [/mm] = 3x^2y-3y

[mm] \bruch{df}{dy} [/mm] = [mm] x^3-3x+2y [/mm]

[mm] \bruch{df}{dxy} =\bruch{df}{dyx} [/mm] = [mm] 3x^2-3 [/mm]

grad [mm] f(x,y)=(3x^2-3y,x^3-3x+2y) [/mm] = 0

3x^2y-3y=0
[mm] 3y(x^2-1)=0 [/mm]
y=0 oder x=1,-1

1.Fall y=0

[mm] x^3-3x=0 [/mm]
[mm] x(x^2-3)=0 [/mm]
x=0 oder [mm] x=\wurzel{3}, -\wurzel{3} [/mm]

2.Fall x=1,x=-1

y=1,y=-1

Mögliche Extrema:

(0,0) [mm] (\wurzel{3},0) (-\wurzel{3},0) [/mm] (1,1) (-1,-1)


die zweite partiellen Ableitungen:

[mm] \bruch{df}{d^2x} [/mm] = 6xy


[mm] \bruch{df}{d^2y} [/mm] = 2

Hesse Matrix:  
[mm] \begin{pmatrix} 6xy & 3x^2-3 \\ 3x^2-3 & 2 \end{pmatrix} [/mm]


[mm] H_f(0,0) [/mm]  
[mm] \begin{pmatrix} 0 & -3 \\ -3 & 2 \end{pmatrix} [/mm] hier liegt ein Sattelpunkt vor da in der Hesse-Matrix positive sowie negative Zahlen vorkommen.

[mm] H_f(\wurzel{3},0) [/mm]
[mm] \begin{pmatrix} 0 & 6 \\ 6 & 2 \end{pmatrix} [/mm] positiv definit daraus folgt ein Tiefpunkt

[mm] H_f(-\wurzel{3},0) [/mm]
[mm] \begin{pmatrix} 0 & -12 \\ -12 & 2 \end{pmatrix}semidefinit [/mm] daraus folgt ein Sattelpunkt

[mm] H_f(1,1)\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix} [/mm] positiv definit also ein Tiefpunkt

[mm] H_f(-1,-1)\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}positiv [/mm] definit also ein Tiefpunkt

ist das richtig? Ich wundere mich dass ich kein Hochpunkt habe, habe ich mich irgendwo verrechnet? Wenn ja, kann mir einer sagen wo? :S

Lg,






        
Bezug
kritische Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 So 21.07.2013
Autor: schachuzipus

Hallo ellegance88,

> Bestimmen Sie die kritischen Punkte von
> [mm]f(x,y)=x^3y-3xy+y^2+1[/mm] und deren Typ.
> Hallo,

>

> die partiellen Ableitungen:

>

> [mm]\bruch{df}{dx}[/mm] = 3x^2y-3y [ok]

>

> [mm]\bruch{df}{dy}[/mm] = [mm]x^3-3x+2y[/mm] [ok]

>

> [mm]\bruch{df}{dxy} =\bruch{df}{dyx}[/mm] = [mm]3x^2-3[/mm] [ok]

>

> grad [mm]f(x,y)=(3x^2-3y,x^3-3x+2y)[/mm] = 0 [ok]

>

> 3x^2y-3y=0
> [mm]3y(x^2-1)=0[/mm]
> y=0 oder x=1,-1 [ok]

"," bedeutett "oder" ...

>

> 1.Fall y=0

>

> [mm]x^3-3x=0[/mm]
> [mm]x(x^2-3)=0[/mm]
> x=0 oder [mm]x=\wurzel{3}, -\wurzel{3}[/mm] [ok]

>

> 2.Fall x=1,x=-1

>

> y=1,y=-1

>

> Mögliche Extrema:

>

> (0,0) [mm](\wurzel{3},0) (-\wurzel{3},0)[/mm] (1,1) (-1,-1) [ok]

>
>

> die zweite partiellen Ableitungen:

>

> [mm]\bruch{df}{d^2x}[/mm] = 6xy [ok]

>
>

> [mm]\bruch{df}{d^2y}[/mm] = 2 [ok]

>

> Hesse Matrix:
> [mm]\begin{pmatrix} 6xy & 3x^2-3 \\ 3x^2-3 & 2 \end{pmatrix}[/mm] [ok]

>
>

> [mm]H_f(0,0)[/mm]
> [mm]\begin{pmatrix} 0 & -3 \\ -3 & 2 \end{pmatrix}[/mm] hier liegt ein
> Sattelpunkt vor [ok] da in der Hesse-Matrix positive sowie
> negative Zahlen vorkommen.

??

Hä? Wie lautet das Kriterium für Indefinitheit?

>

> [mm]H_f(\wurzel{3},0)[/mm]
> [mm]\begin{pmatrix} 0 & 6 \\ 6 & 2 \end{pmatrix}[/mm] positiv definit daraus
> folgt ein Tiefpunkt

Sicher?

Diese Matrix hat doch einen positiven und einen negativen Eigenwert, wenn ich mich nicht auf die Schnelle verguckt habe ...

Damit haben wir was?

>

> [mm]H_f(-\wurzel{3},0)[/mm]
> [mm]\begin{pmatrix} 0 & -12 \\ -12 & 2 \end{pmatrix}semidefinit[/mm] daraus folgt
> ein Sattelpunkt

Das sollte doch dieselbe Hessematrix sein wie für [mm] $(\sqrt [/mm] 3,0)$

Wie kommst du auf die -12?

Die Definitheit ist wieder falsch

>

> [mm]H_f(1,1)\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}[/mm] positiv definit also ein
> Tiefpunkt [ok]

>

> [mm]H_f(-1,-1)\begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}positiv[/mm] definit also ein
> Tiefpunkt [ok]

>

> ist das richtig? Ich wundere mich dass ich kein Hochpunkt
> habe, habe ich mich irgendwo verrechnet? Wenn ja, kann mir
> einer sagen wo? :S

Du kannst dir den Graphen ja mal bei Wolfram Alpha plotten lassen, das ist immer hilfreich!

>

> Lg,

Gruß

schachuzipus

Bezug
                
Bezug
kritische Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 So 21.07.2013
Autor: ellegance88

Ja okay habe mein Fehler gesehen.
Hab einfach nur auf Hesse-Matrix geachtet und nicht auf die Eigenwerte wenn ich Hesse-Matrix für (Wurzel 3,0) angucke habe ich auch zwei Eigenwerte raus ein positives sowie ein negatives also liegt da ein Sattelpunkt vor. Danke :)
aber die Annahme das da kein Hochpunkt liegt war ja richtig :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]