matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigeskreisgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - kreisgleichung
kreisgleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kreisgleichung: wie geht das... :(
Status: (Frage) beantwortet Status 
Datum: 19:09 Do 10.01.2008
Autor: anfaenger_

Aufgabe
k1:x²+y²=16
k2:(x-5)²+y²=9

k1: x²+z²=16
k2: (x-5)²+y²=9

wie mach ich die beiden in die normale kreisgleichung?
wie zB
k:(x-1)²+(y-2)²=5


oder wärs dann einfach
k1:(x-0)²+(y-0)²=16 ???
danke

        
Bezug
kreisgleichung: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 19:19 Do 10.01.2008
Autor: Loddar

Hallo Anfänger!


> oder wärs dann einfach
> k1:(x-0)²+(y-0)²=16 ???

[ok] Genau!!


Gruß
Loddar


Bezug
                
Bezug
kreisgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Do 10.01.2008
Autor: anfaenger_

gut dann habe ich ausgerechnet 4 tangenten
(schnittpunktre waren: P1(15;-12/5) P2(16/5;12/5)

[mm] y=\bruch{-16(x-5)}{7} [/mm]
[mm] y=\bruch{16(x-5)}{7} [/mm]
[mm] y=\bruch{3x}{4} [/mm]
[mm] \bruch{-3x}{4} [/mm]

dann soll ich die zugehörigen schnittwinkel berechnen

ich würde das mit der formel machen:


[mm] tan\alpha =\bruch{m2-m1}{1+m1m2} [/mm]



aber ich weiß nciht so recht was ich wie von den vier tangentenglichungen dort einsetzen soll :(

Bezug
                        
Bezug
kreisgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 10.01.2008
Autor: anfaenger_

sollt nur deutlich zeigen das ich falsch geklickt hab und die mitteilung eigentlich ne frage werden sollte-.-

Bezug
                                
Bezug
kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Do 10.01.2008
Autor: Steffi21

Hallo, da du nicht die volle Aufgabe genannt hast, vermute ich mal:

[mm] y=\bruch{3}{4}x [/mm] und [mm] y=-\bruch{3}{4}x [/mm]  sind die roten Tangenten, vom Punkt (0; 0) an den kleinen Kreis, wo er den großen Kreis schneidet,

[a][Bild Nr. 1 (fehlt/gelöscht)]

wenn es der Schnittwinkel beider Tangenten sein soll, so beachte das Dreieck ABC, du möchtest den Winkel ACB, also [mm] tan(WinkelACB)=\bruch{Gegenkathete}{Ankathete}=\bruch{0,75}{1}, [/mm] somit [mm] 36,87^{0}, [/mm] somit Schnittwinkel somit [mm] 73,74^{0}, [/mm] mit den anderen Tangenten solltest du mal die vollständige Aufgabe posten,

Steffi

Bezug
                                
Bezug
kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Do 10.01.2008
Autor: Steffi21

Hallo, da du nicht die volle Aufgabe genannt hast, vermute ich mal:

[mm] y=\bruch{3}{4}x [/mm] und [mm] y=-\bruch{3}{4}x [/mm]  sind die roten Tangenten, vom Punkt (0; 0) an den kleinen Kreis, wo er den großen Kreis schneidet,

[Dateianhang nicht öffentlich]

wenn es der Schnittwinkel beider Tangenten sein soll, so beachte das Dreieck ABC, du möchtest den Winkel ACB, also [mm] tan(WinkelACB)=\bruch{Gegenkathete}{Ankathete}=\bruch{0,75}{1}, [/mm] somit [mm] 36,87^{0}, [/mm] somit Schnittwinkel [mm] 73,74^{0}, [/mm] mit den anderen Tangenten solltest du mal die vollständige Aufgabe posten,


Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                        
Bezug
kreisgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Do 10.01.2008
Autor: anfaenger_

Aufgabe
unter dem schnittwinkel zweier kreise versteht man den (spitzen) schnittwinkel der beiden tangenten im betrechteten schnittpunkt
bestimmen sie die schnittpunkte der beiden kreise und die zugehörigen schnittwinkel!!

k1 und k2 hatte ich ja bereits gesagt

mhh ganz klar ist mir das irgendwie noch nicht :|
woran kann ich das (ohne zu zeichnen) denn erkennen??

Bezug
                                                
Bezug
kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Do 10.01.2008
Autor: weduwe

jetzt habe ich endlich verstanden, was du willst, hoffe ich wenigstens.

du sollst den schnittwinkel der tangenten in den schnittpunkten der beiden kreise bestimmen.
wenn ja:

da berechnet man am einfachsten den schnittwinkel der beiden radien, also [mm]M_1S[/mm] und [mm]M_2S[/mm], denn radius und tangente stehen aufeinander senkrecht.
damit hast du
[mm] m_1=\frac{12}{16}=\frac{3}{4} [/mm] und [mm] m_2=\frac{\frac{12}{5}-0}{\frac{16}{5}-5}=-\frac{4}{3} [/mm]
und da [mm] m_1\cdot m_2=-1 [/mm] folgt....

da der server dauernd spinnt,
meine anregung dazu, siehe darüber.


Bezug
                                                        
Bezug
kreisgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Do 10.01.2008
Autor: anfaenger_

wo kommt denn da auf einmal  [mm] \bruch{12}{16} [/mm] her?

Bezug
                                                                
Bezug
kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Do 10.01.2008
Autor: Steffi21

Hallo,

[mm] \bruch{3}{4} [/mm] ist der Anstieg der roten Tangente, das hattest du doch vorhin schon berechnet, der Schnittpunkt beider Tangenten lautet A(3,2; 2,4),

rote Tangente: [mm] y_r_o_t=\bruch{3}{4}x [/mm]

blaue Tanhente: [mm] y_b_l_a_u=-\bruch{4}{3}x+\bruch{20}{3} [/mm]

da die Aufgabenstellung jetzt klar geworden ist, habe ich die alte Skizze abgeändert:

[Dateianhang nicht öffentlich]

ist Dir der Winkel jetzt klar?
Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                                
Bezug
kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Do 10.01.2008
Autor: Steffi21

Hallo,

[mm] \bruch{3}{4} [/mm] ist der Anstieg der roten Tangente, das hattest du doch vorhin schon berechnet, der Schnittpunkt beider Tangenten lautet A(3,2; 2,4),

rote Tangente: [mm] y_r_o_t=\bruch{3}{4}x [/mm]

blaue Tanhente: [mm] y_b_l_a_u=-\bruch{4}{3}x+\bruch{20}{3} [/mm]

da die Aufgabenstellung jetzt klar geworden ist, habe ich die alte Skizze abgeändert:

[a][Bild Nr. 1 (fehlt/gelöscht)]

ist Dir jetzt der Winkel klar?
Steffi

Bezug
                                
Bezug
kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Do 10.01.2008
Autor: weduwe

jetzt habe ich endlich verstanden, was du willst, hoffe ich wenigstens.

du sollst den schnittwinkel der tangenten in den schnittpunkten der beiden kreise bestimmen.
wenn ja:

da berechnet man am einfachsten den schnittwinkel der beiden radien, also [mm]M_1S[/mm] und [mm]M_2S[/mm], denn radius und tangente stehen aufeinander senkrecht.
damit hast du
[mm] m_1=\frac{12}{16}=\frac{3}{4} [/mm] und [mm] m_2=\frac{\frac{12}{5}-0}{\frac{16}{5}-5}=-\frac{4}{3} [/mm]
und da [mm] m_1\cdot m_2=-1 [/mm] folgt....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]