matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrakreisgleichung-geradengl.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - kreisgleichung-geradengl.
kreisgleichung-geradengl. < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kreisgleichung-geradengl.: idee
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 06.12.2006
Autor: Bea1986

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also ich habe folgendes Problem bei einer Aufgabe:

Der Einheitskreis mit der Kreisgleichung

[mm] x^2 +y^2 [/mm] = 1

schneidet die Gerade mit der Geradengleichung

y= r* [mm] \cdot \*x-1 [/mm] , r > 1 ; [mm] r=\bruch{n}{m} [/mm]  , n,m aus N

1.Bestimme die schnittpunkte
2. Leite aus den Koordinaten des nichttrivialen Schnittpunktes die indischen Formeln her

Indische Formeln: [mm] (n^2 [/mm] - [mm] m^2, [/mm] 2mn, [mm] n^2+m^2) [/mm]

ich weiß wie ich die schnittpunkte berechnen kann wenn ich die steigung habe, nur mein Problem ist es auf die Steigung zu kommen.
kann mir jemand helfen?

Bea

        
Bezug
kreisgleichung-geradengl.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mi 06.12.2006
Autor: M.Rex

Hallo Beate und [willkommenmr]





> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Also ich habe folgendes Problem bei einer Aufgabe:
>  
> Der Einheitskreis mit der Kreisgleichung
>  
> [mm]x^2 +y^2[/mm] = 1
>  
> schneidet die Gerade mit der Geradengleichung
>  
> y= r* [mm]\cdot \*x-1[/mm] , r > 1 ; [mm]r=\bruch{n}{m}[/mm]  , n,m aus N
>  
> 1.Bestimme die schnittpunkte
>  2. Leite aus den Koordinaten des nichttrivialen
> Schnittpunktes die indischen Formeln her
>  
> Indische Formeln: [mm](n^2[/mm] - [mm]m^2,[/mm] 2mn, [mm]n^2+m^2)[/mm]
>  
> ich weiß wie ich die schnittpunkte berechnen kann wenn ich
> die steigung habe, nur mein Problem ist es auf die Steigung
> zu kommen.
>  kann mir jemand helfen?
>  
> Bea

Du hast ja normalerweise zwei Schnittpunkte, [mm] S_{1}(x_{s_{1}}/y_{s_{1}}) [/mm] und [mm] S_{2}(x_{s_{2}}/y_{s_{2}}) [/mm]

Für eine Gerade durch zwei Punkte gilt ja: [mm] m=\bruch{y_{1}-y_{2}}{x_{1}-x_{2}} [/mm]

Also hier:

[mm] m=\bruch{y_{s_{1}}-y_{s_{2}}}{x_{s_{1}}-x_{s_{2}}} [/mm]

Hast du nur einen Schnittpunkt, ist es eine Tangente der Form [mm] y=\bruch{m}{n}x-1 [/mm]
Dann kannst du diese in den Kreis einsetzen, also
[mm] x²+(\bruch{m}{n}x-1)²=1 [/mm]
[mm] \gdw x²+\bruch{m}{n}x²-2\bruch{m}{n}x+1=1 [/mm]
[mm] \gdw (1+\bruch{m}{n})x²-2\bruch{m}{n}x=0 [/mm]
[mm] \gdw x²-\bruch{\bruch{2m}{n}}{1+\bruch{m}{n}}x+0=0 [/mm]

Und jetzt in die p-q-Formel einsetzen.
[mm] x_{1;2}=\bruch{\bruch{m}{n}}{1+\bruch{m}{n}}\pm\wurzel{\left(\bruch{\bruch{m}{n}}{1+\bruch{m}{n}}\right)²+0} [/mm]

Da das aber deine Tangente sein soll, darf es nur eine Nullstelle geben, und das wiederum heisst, der Wurzelterm muss =0 sein.

Also
[mm] \wurzel{\left(\bruch{\bruch{m}{n}}{1+\bruch{m}{n}}\right)²+0}=0 [/mm]
[mm] \gdw\bruch{\bruch{m}{n}}{1+\bruch{m}{n}}=0 [/mm]
[mm] \gdw\bruch{m}{n}=0 [/mm]
[mm] \gdw [/mm] m=0
Kommst du jetzt weiter?

Marius

Bezug
                
Bezug
kreisgleichung-geradengl.: danke schön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 Do 07.12.2006
Autor: Bea1986

ja ich komme jetzt weiter...ich hatte diesen Ansatz auch zuerst, nur war ich mir irgendwie unsicher, ob das der richtige weg sei.ich hatte ihn schnell verworfen und nach anderen alternativen gesucht.

Vielen dank für deine Hilfe

Bea

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]