matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10korrektur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - korrektur
korrektur < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

korrektur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Do 06.11.2008
Autor: zitrone

Hi,

hab da mal eine kurze Frage, ist das richtig?

Bestimmung der Exponentialfunktionen
W ( -s|0,16)  

0,16 = [mm] a^{-2} [/mm]

[mm] \wurzel[-2]{0,16} [/mm]

-0,4= a

lg zitrone


        
Bezug
korrektur: Korrektur
Status: (Antwort) fertig Status 
Datum: 20:16 Do 06.11.2008
Autor: Loddar

Hallo zitrone!


Man kann keine $-2_$-te Wurzel ziehen. Forme um wie folgt:
[mm] $$a^{-2} [/mm] \ = \ 0.16$$
[mm] $$\bruch{1}{a^2} [/mm] \ = \ 0.16$$
[mm] $$a^2 [/mm] \ = \ [mm] \bruch{1}{0.16}$$ [/mm]
usw.


Gruß
Loddar


Bezug
                
Bezug
korrektur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 06.11.2008
Autor: zitrone

Hi,

danke! aber wieso [mm] \bruch{1}{0,16} [/mm]

weil wenn ich

[mm] \bruch{1}{a²} [/mm] = 0,16  | *1
   a²         = 0,16
  
  

aber wie mach ich das mit dem hoch 2 ?


lg zitrone




Bezug
                        
Bezug
korrektur: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Do 06.11.2008
Autor: moody


> danke! aber wieso [mm]\bruch{1}{0,16}[/mm]

[mm]/bruch{1}{a^2} = 0.16 | * a^2 \gdw 1 = 0.16 * a^2 | / 0.16 \gdw \bruch{1}{0,16} = a^2[/mm]

> weil wenn ich
>  
> [mm]\bruch{1}{a²}[/mm] = 0,16  | *1
>     a²         = 0,16

[mm]\bruch{1}{a²}[/mm] = 0,16  | *1

[mm] \gdw[/mm]  [mm]\bruch{1}{a²}[/mm] = 0,16

Du musst doch mit dem Nenner multiplizieren um das aufzulösen, nicht mit dem Zähler.



Bezug
                                
Bezug
korrektur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Do 06.11.2008
Autor: zitrone

Hi,

hm also so:

( 0,16 ist wie [mm] \bruch{4}{25}) [/mm]

[mm] \bruch{4}{25} [/mm] = [mm] \bruch{1}{a²} [/mm] | *a²

[mm] \bruch{4}{25}*a² [/mm] = 1 | :25

4 a² = 0,04 | :4

a²  = 0,01 | [mm] \wurzel{} [/mm]

a  = 0,1


lg zitrone

Bezug
                                        
Bezug
korrektur: nicht richtig
Status: (Antwort) fertig Status 
Datum: 20:43 Do 06.11.2008
Autor: Loddar

Hallo zitrone!


> [mm]\bruch{4}{25}[/mm] = [mm]\bruch{1}{a²}[/mm] | *a²
>  
> [mm]\bruch{4}{25}*a²[/mm] = 1 | :25

[notok] Um die 25 aus dem Nenner zu holen, musst Du die Gleichung mit 25 multiplizieren.


Gruß
Loddar


Bezug
                                                
Bezug
korrektur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Do 06.11.2008
Autor: zitrone



aber jetzt:

( 0,16 ist wie [mm] \bruch{4}{25}) [/mm]

[mm] \bruch{4}{25} [/mm] = [mm] \bruch{1}{a²} [/mm] | *a²

[mm] \bruch{4}{25}*a² [/mm] = 1 | *25

4 a² = 25 | :4

a²  = 5 | [mm] \wurzel{} [/mm]

a  ~ 2,24


lg zitrone

Bezug
                                                        
Bezug
korrektur: na, na, na ...
Status: (Antwort) fertig Status 
Datum: 20:51 Do 06.11.2008
Autor: Loddar

Hallo zitrone!


[lehrer] Bei mir ergibt 25 : 4 aber nicht 5 !


Gruß
Loddar


Bezug
                                                                
Bezug
korrektur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Do 06.11.2008
Autor: zitrone

Hallo,

hm da war ich wohl übereifrig ...^^"

[mm] \bruch{4}{25} [/mm] = [mm] \bruch{1}{a²} [/mm] | *a²

[mm] \bruch{4}{25}*a² [/mm] = 1 | *25

4 a² = 25 | :4

a²  = 6,25 | [mm] \wurzel{} [/mm]

a  = 2,5

Bezug
                                                                        
Bezug
korrektur: nun fast richtig
Status: (Antwort) fertig Status 
Datum: 21:15 Do 06.11.2008
Autor: Loddar

Hallo zitrone!


So sieht es schon viel besser aus ... [ok]

Allerdings musst Du bedenken, dass es hier auch zwei Lösungen geben kann mit:
[mm] $$a_{1/2} [/mm] \ = \ [mm] \red{\pm} [/mm] \ 2.5$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]