matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1konvexe punktmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - konvexe punktmenge
konvexe punktmenge < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe punktmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mi 17.01.2007
Autor: klamao

Aufgabe
sei durch die gleichung ax+by+c=0 eine gerade g in [mm] R^2 [/mm] gegeben. zeigen sie mit der analytischen definition einer halbebene, dass jede halbebene von g eine konvexe punktmenge ist.

hallo,
die definition einer halbebene ist ja entweder  ax+by+c<0 oder ax+by+c>o, da sie ja entwede über-oder unterhalb von g liegt. g liegt also genau zwischen den halebenen.
die koordinaten eines punktes, der zwischen zwei punkten liegt, sind: (x1+t(x2-x1), y1+t(y2-y1))=((1-t)x1+tx2,(1-t)y1+ty2) mit 0 < t < 1, wobei x1,y1 und x2,y2 die koordinaten der punkte sind, zwischen den der punkt liegt.
wie krieg ich das jetzt auf die gerade bezogen? diese liegt ja genau wie der punkt auch zwischen zwei dingen. hoffe ihr könnt mir weiterhelfen!
lg

        
Bezug
konvexe punktmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mi 17.01.2007
Autor: Leopold_Gast

Du setzt ja voraus, daß [mm]\left( x_1 , y_1 \right)[/mm] und [mm]\left( x_2 , y_2 \right)[/mm] einer gemeinsamen Halbebene angehören, z.B. der mit [mm]ax + by + c > 0[/mm]. Daher ist

[mm]a x_1 + b y_1 + c > 0 \, , \ \ a x_2 + b y_2 + c > 0[/mm]

vorausgesetzt. Ein Punkt der Strecke zwischen den beiden Punkten kann nun in symmetrischer Form als

[mm]s \cdot \left( x_1 , y_1 \right) + t \cdot \left( x_2 , y_2 \right)[/mm] mit [mm]s,t \geq 0[/mm] und [mm]s + t = 1[/mm]

geschrieben werden. Und jetzt setze die Koordinaten von [mm]\left( s x_1 + t x_2 , s y_1 + t y_1 \right)[/mm] in [mm]ax + by +c[/mm] ein und weise nach, daß das auch [mm]> 0[/mm] ist. Dabei mußt du so umformen, daß die Voraussetzung ins Spiel kommt. Tip: [mm]c = s c + t c[/mm] wegen [mm]s + t = 1[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]