konvexe hülle < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:44 Mo 29.04.2013 | Autor: | drossel |
Aufgabe | Sei [mm] M\subseteq \IR^{n}. [/mm] conv(M) die Konvexe Hülle von M. Zeigen Sie
[mm] conv(M)=\bigcap_{C konvex, M \subseteq C}C [/mm] |
Hallo, ich weiss nicht ganz, wie ich das zeigen soll.
Es geht nach dem Prinzip, die Inklusionen [mm] \subseteq [/mm] und [mm] \supseteq [/mm] nachzuweisen, oder ?
Wenn ich mit Wenn ich mit [mm] \subseteq [/mm] anfange, was muss ich da genau zeigen, Für a in conv(M) ist a in [mm] \bigcap_{C konvex, M \subseteq C}C [/mm] ?
Und genauso auch die umgekehrte Inklusion? oder geht das hier anders?
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:19 Di 30.04.2013 | Autor: | Marcel |
Hallo,
> Sei [mm]M\subseteq \IR^{n}.[/mm] conv(M) die Konvexe Hülle von M.
> Zeigen Sie
> [mm]conv(M)=\bigcap_{C konvex, M \subseteq C}C[/mm]
> Hallo, ich
> weiss nicht ganz, wie ich das zeigen soll.
wir sollten erfahren, wie Ihr [mm] $\text{conv}(M)$ [/mm] DEFINIERT habt: Vermutlich - sonst sehe
ich in der Aufgabe hier wenig Sinn - als "die Menge aller Konvexkombinationen
von Elementen aus [mm] $M\,$", [/mm] oder? Schreib' das aber mal alles hin, auch mit
dem Formeleditor, und sei es nur, damit Du es selbst nochmal geschrieben
und Dir klargemacht hast.
> Es geht nach dem Prinzip, die Inklusionen [mm]\subseteq[/mm] und
> [mm]\supseteq[/mm] nachzuweisen, oder ?
Ja!
> Wenn ich mit Wenn ich mit [mm]\subseteq[/mm] anfange, was muss ich
> da genau zeigen, Für a in conv(M) ist a in [mm]\bigcap_{C konvex, M \subseteq C}C[/mm]
Ich bin unten schreibfaul und schreibe da nur noch [mm] $\bigcap_{...}...$ [/mm] für!
> ?
> Und genauso auch die umgekehrte Inklusion? oder geht das
> hier anders?
Man kann es sich hier einfach(er) machen: Für [mm] $\text{conv}(M)$ [/mm] habt ihr sicher
schon gezeigt, dass das eine konvexe Menge ist. Leicht einzusehen ist
$M [mm] \subseteq \text{conv}(M)\,.$ [/mm] (Auch, wenn ihr [mm] $\text{conv}(M)$ [/mm] vermittels "Konvexkombinationen
von Elementen aus [mm] $M\,$" [/mm] definiert habt!)
Also ist [mm] $\text{conv}(M)$ [/mm] eine konvexe Menge, die [mm] $M\,$ [/mm] enthält. Daraus
folgt sofort, dass sie in dem Schnitt [mm] $\bigcap_{...}...$ [/mm] ist, denn schau'
Dir mal genau die Definition dieses Schnittes an.
(Nebenbei kann man auch sagen, dass dieser Schnitt die "kleinste" konvexe
Menge ist, die [mm] $M\,$ [/mm] enthält. Warum liefert dieser Schnitt denn überhaupt
eine konvexe Menge?)
Deswegen ist [mm] $\bigcap_{...}... \subseteq \text{conv}(M)$ [/mm] klar. (Beachte, dass allgemein gilt - was auch
leicht zu beweisen ist: Ist [mm] $I\,$ [/mm] (irgendeine; abzählbare oder halt auch nicht
abzählbare) nichtleere Indexmenge und ist [mm] $(A_i:\;\;i \in [/mm] I)$ eine Familie von Mengen, so gilt
[mm] $$\bigcap_{i \in I}A_i \subseteq A_j$$
[/mm]
für jedes $j [mm] \in I\,.$
[/mm]
In diesem Sinne erkennt man auch, dass
[mm] $$\bigcap_{...}...$$
[/mm]
die "kleinste" konvexe Menge ist, die [mm] $M\,$ [/mm] enthält - und das besagt nichts
anderes als: Ist [mm] $P\,$ [/mm] eine konvexe Menge mit $M [mm] \subseteq P\,,$ [/mm] so folgt schon [mm] $\bigcap_{...}... \subseteq P\,.$)
[/mm]
Eigentlich hast Du (siehe "Vorgeplänkel") hier also "nur" noch [mm] $\text{conv(M)} \subseteq \bigcap_{...}...$
[/mm]
zu begründen! (Da [mm] "$\supseteq$" [/mm] hier quasi "per Definitionem automatisch
klar ist - sofern Du entsprechendes Wissen über [mm] $\text{conv}(M)$ [/mm] zur Verfügung
hast.")
Also zu [mm] "$\subseteq$": [/mm] Sei $a [mm] \in \text{conv}(M)$. [/mm] Dann... (jetzt brauchen wir Eure Definition
von [mm] $\text{conv}(M)$!! [/mm] - weiter könnte es gehen via: kann man [mm] $a\,$ [/mm] schreiben als...)
Gruß,
Marcel
|
|
|
|