matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskonvexe Linearkombination 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - konvexe Linearkombination
konvexe Linearkombination < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe Linearkombination : Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 30.05.2005
Autor: Toyo

Hallo, ich komme bei folgender Aufgabe nicht weiter:

Sei I endliche Teilmenge von [mm] \IN [/mm] mit {0,1,2}  [mm] \subset [/mm] I.
Sei [mm] M={ x^{(v)} | v \in I } \subset \IR^{n} [/mm] eine Menge
paarweise verschiedener Punkte, wobei
[mm] x^{(0)} = a_{0} x^{(1)} + (1 - a_{0}) x^{(2)} [/mm] mit [mm] 0 [mm] x^{(v)} [/mm] heißt zerlegbar, wenn
[mm] x^{(v)} = a_{v} x^{(2v+1)} + (1 - a_{v}) x^{(2v+2)} [/mm] mit [mm] 0 < a_{v} < 1 [/mm]
Zeigen Sie: [mm] x^{(0)} [/mm] ist als konvexe Linearkombination der nichtzerlegbaren Punkte in M darstellbar.

Ich habe mir überlegt, dass es ja quasie einen Binärbaum darstellt. und mann kann ja immer die [mm] x^{(i)} [/mm] durch ihre zwei Kinder darstellen. Da M endlich ist hört dieser Prozess irgendwann auf und am Ende wird dann [mm] x^{(0)} [/mm] nur noch durch nicht mehr Zerlegbare Vektoren dargestellt. Aber ich habe leider überhaupt keine Ahnung, wie ich das formal korrekt aufschreiben soll. Induktion hilft mir doch nicht weiter oder?
Vielen Dank für eure Hilfe.
Grüße Toyo

        
Bezug
konvexe Linearkombination : Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Di 31.05.2005
Autor: banachella

Hallo!

Der Schritt ist eigentlich ganz einfach: Wäre [mm] $x_0$ [/mm] nicht durch nicht zerlegbare darstellbar, so wäre zu jeder Zerlegung eine Verfeinerung zu finden. Wenn du in einer Zerlegung mit [mm] $\nu_0$ [/mm] den kleinsten Index bezeichnest mit [mm] $x^{(\nu_0)}$ [/mm] zerlegbar, so kannst du [mm] $\nu_0$ [/mm] um mindestens 1 erhöhen, indem du [mm] $x^{(\nu_0)}$ [/mm] zerlegst. Dann wächst nach $N$ Schritten [mm] $\nu_0$ [/mm] über diese Grenze hinaus, wobei $N$ das größte Element von $I$ ist. Das ist aber ein Widerspruch.

Gruß, banachella

Bezug
                
Bezug
konvexe Linearkombination : Frage
Status: (Frage) beantwortet Status 
Datum: 16:46 Mi 01.06.2005
Autor: Toyo

Hi, aber ist da vielleicht ein Widerspruch vor dem eigentlichen Widerspruch in deinem Widerspruchsbeweiß?
Wenn du sagst [mm] x^{(v_{0})} [/mm] ist nicht zerlegbar, so kannst du ... ,in dem zu  [mm] x^{(v_{0})} [/mm] zerlegst. Du hast am Anfang geschrieben, der Schritt, soll dies hier der Teil einer Induktion sein?
Mir ist schon klar, dass [mm] x^{(0)} [/mm] immer als Zerlegung von nicht mehr Zerlegbaren Elementen ausgedrückt werden kann, da es endlich viele Elemente sind, aber wie zeigt man dies mathematisch korrekt im Sinne der Aufgabenstellung?

Bitte helft mir nochmal.
Grüße Toyo

Bezug
                        
Bezug
konvexe Linearkombination : Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mi 01.06.2005
Autor: banachella

Hallo!

Da ist tatsächlich ein Tippfehler. Es müsste natürlich heißen "Sei [mm] $v_0$ [/mm] der kleinste Index mit [mm] $x_{v_0}$ [/mm] zerlegbar." Ich werd's gleich korrigieren!

Also: Bezeichne [mm] $N:=\max\{v\in I\}$. [/mm]
Angenommen, [mm] $x_0$ [/mm] ist nicht als Konvexkombination aus nicht zerlegbaren Elementen von $M$ darstellbar.

Sei [mm] $x_0=a_0x_1+(1-a_0)x_2$ [/mm] die $0$-te Konvexkombination.

Sei [mm] $x_0=\summe_{v\in V_n} c_v x_v$ [/mm] die $n$-te Konvexkombination. Sei [mm] $v_n$ [/mm] der kleinste Index aus dieser Konvexkombination, der zu einem zerlegbaren [mm] $x_v$ [/mm] gehört. (Dieses [mm] $v_0$ [/mm] existiert nach Voraussetzung.)
Wir konstruieren die $n+1$-Konvexkombination, indem wir [mm] $x_{v_n}$ [/mm] zerlegen. Setze [mm] $V_{n+1}:=V_n\setminus {v_n}\cup \{v_{2n+1},v_{2n+2}\}$. [/mm]
Insbesondere ist [mm] $v_{n+1}\ge v_n+1$. [/mm]

Nach dem $N$-ten Schritt ist damit [mm] $v_{N+1}>N$. [/mm] Das ist ein Widerspruch.

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]