matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskonvexe Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - konvexe Funktionen
konvexe Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe Funktionen: Beweis
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 18.12.2004
Autor: nemo102

Hallo!

Ich muss folgenden Satz beweisen:
1. Die Grenzfunktion einer Folge konvexer Funktionen ist konvex.

Beweis:

1.  Mit diesem Teil des Beweises bin ich nicht zurecht gekommen.  Also hier meine Ansätze:
Wir betrachten eine Folge [mm] f_1(x), f_2(x), f_3(x), [/mm] ... von Funtionen, die alle im gleichen Intervall definiert und konvex sein sollen. Es existiert außerdem der Limes:  [mm] \limes_{n\rightarrow\infty} f_n(x) [/mm] für alle x des Intervalls.  Bildet man den Ausdruck

[mm] \bruch{x_1(f(x_2)-f(x_3))+x_2(f(x_3)-f(x_1))+x_3(f(x_1)-f(x_2))}{(x_1-x_2)(x_2-x_3)(x_3-x_1)} [/mm]
[mm] \ge [/mm] 0

für [mm] f_n(x) [/mm] bei beliebigen, aber festen Werten [mm] x_1, x_2, x_3 [/mm] und geht zum Limes über, so ergibt sich die Konvexität von f(x).

Der letzte Teil des Beweises war ein Tipp von einem meiner Kommilitonen. Leider kann ich ihn nicht umsetzen. Kann mir jemand von euch helfen?


Gruß Nemo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konvexe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 27.12.2004
Autor: Stefan

Hallo!

Also: Für alle $n [mm] \in \IN$, $\lambda \in [/mm] (0,1)$  und alle $x,y [mm] \in [/mm] I$ (wenn ich mit $I$ das Intervall bezeichne, auf dem alle [mm] $f_n$ [/mm] definiert und konvex sind) gilt:

[mm] $f_n(\lambda [/mm] x + [mm] (1-\lambda)y) \le \lambda f_n(x) [/mm] + [mm] (1-\lambda)f_n(y)$. [/mm]

Wir vollziehen jetzt auf beiden Seiten für feste [mm] $x,y,\lambda$ [/mm] den Grenzübergang für $n [mm] \to \infty$. [/mm] Ungleichen bleiben, sofern sie nicht echt sind, unter Grenzwertbildungen erhalten. Das heißt es gilt:

[mm] $\lim\limits_{n \to \infty} [f_n(\lambda [/mm] x + [mm] (1-\lambda)y) ]\le \lim\limits_{n \to \infty}[ \lambda f_n(x) [/mm] + [mm] (1-\lambda)f_n(y)]$. [/mm]

Mit Hilfe der Grenzwertsätze erhalten wir:

[mm] $f(\lambda [/mm] x + [mm] (1-\lambda)y) \le \lambda [/mm] f(x) + [mm] (1-\lambda)f(y)$, [/mm]

d.h. auch $f$ ist konvex.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]