matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - konvergenzradius
konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 12.03.2008
Autor: eumel

Aufgabe
bestimmen sie die konvergenzradien folgender reihen:

[mm] \summe_{i=0}^{\infty} 3^{n+1}x^{2n} [/mm]

[mm] \summe_{i=0}^{\infty} 3^{n+1}x^{n^{2}} [/mm]

[mm] \summe_{i=0}^{\infty} \wurzel{n}^{n} x^{n} [/mm]

[mm] \summe_{i=0}^{\infty} \bruch{x^{n}}{a^{n} + b^{n}} [/mm] , a,b [mm] \in [/mm] |R

hi ^^
also ich hab probleme mit den potenzreihen da ich net weiß wie man vorgeht, wenn man KEIN [mm] x^n [/mm] dort stehen hat :-|
kann mir da jemand erklären wie man damit dann rechnet?
danke und gruß ^^

eumel

        
Bezug
konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 12.03.2008
Autor: angela.h.b.


> bestimmen sie die konvergenzradien folgender reihen:
>  
> [mm]\summe_{i=0}^{\infty} 3^{n+1}x^{2n}[/mm]
>  
> [mm]\summe_{i=0}^{\infty} 3^{n+1}x^{n^{2}}[/mm]
>  
> [mm]\summe_{i=0}^{\infty} \wurzel{n}^{n} x^{n}[/mm]
>  
> [mm]\summe_{i=0}^{\infty} \bruch{x^{n}}{a^{n} + b^{n}}[/mm] , a,b
> [mm]\in[/mm] |R
>  hi ^^
>  also ich hab probleme mit den potenzreihen da ich net weiß
> wie man vorgeht, wenn man KEIN [mm]x^n[/mm] dort stehen hat :-|
>  kann mir da jemand erklären wie man damit dann rechnet?

Hallo,

ich bin mir nicht sicher, ob ich Dein Problen richtig verstehe.

Meinst Du z.B. die erste Aufgabe, weil Du da nicht [mm] x^n [/mm] sondern [mm] x^{2n} [/mm] hast?

Hier ist, wenn wir die Potenzreihe als [mm] \summe a_nx^n [/mm] schreiben,
[mm] a_n:=3^{\bruch{n}{2}+1} [/mm] für gerades n,
[mm] a_n:= [/mm] 0 für ungerades n.

Das bedeutet, daß Du den []Konvergenzradius nicht mit
    [mm] r=\lim_{n\rightarrow\infty} \bigg| \frac{a_n}{a_{n+1}} \bigg| [/mm]  berechnen kannst.

Helfen tut Dir aber die Formel v. Cauchy-Hadamard:     [mm] r=\frac{1}{\limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right)}. [/mm]

Berechne [mm] \limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right) [/mm] und bilde den Kehrwert.

Gruß v. Angela

Bezug
                
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mi 12.03.2008
Autor: eumel

auf diese hilfe hätte ich jetz verzichten können, wo die theorie steht weiß ich, mich irritiert nur dass dort kein [mm] x^n [/mm] steht sondern was anderes ^^

ich möcht einfach nur wissen wie man die konvergenzradien berechnet, wenn reihen solch eine form haben:

[mm] \summe_{i=0}^{\infty} a_{n} x^{2n} [/mm]
[mm] \summe_{i=0}^{\infty} a_{n} x^{n^{2}} [/mm]

und eben nicht:
[mm] \summe_{i=0}^{\infty} a_{n} x^{x}, [/mm] das is pille palle^^

und eben anhand den beispielen was dort rauskommt

Bezug
                        
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:58 Do 13.03.2008
Autor: angela.h.b.


> auf diese hilfe hätte ich jetz verzichten können, wo die
> theorie steht weiß ich, mich irritiert nur dass dort kein
> [mm]x^n[/mm] steht sondern was anderes ^^

  

> ich möcht einfach nur wissen wie man die konvergenzradien
> berechnet, wenn reihen solch eine form haben:
>  
> [mm]\summe_{i=0}^{\infty} a_{n} x^{2n}[/mm]
>  [mm]\summe_{i=0}^{\infty} a_{n} x^{n^{2}}[/mm]
>  
> und eben nicht:
> [mm]\summe_{i=0}^{\infty} a_{n} x^{x},[/mm] das is pille palle^^

Hallo,

ich hatte eigentlich versucht, Dir genau das in meinem Post zu erklären, allerdings hatte ich zugegebenermaßen ein Fehlerchen eingebaut, welches jetzt beseitigt ist.

Vielleicht liest Du's nochmal gründlich.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]