matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertekonvergenz von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - konvergenz von Reihen
konvergenz von Reihen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Do 04.01.2007
Autor: lene233

Aufgabe
Für welche [mm] a\in\IR [/mm] konvergiert die Reihe
[mm] \bruch{a}{1+a^{2}} [/mm] ?

Hallo,

Also ich habe schon herausgefunden, dass

[mm] -\infty \le [/mm] a < -1 ... es geht gegen -0.5
-1 [mm] \le [/mm] a [mm] \le [/mm] 1 ... es geht gegen 0.5
1 < a [mm] \le \infty [/mm] ... es geht gegen 0.

Also wenn man es sich in einem Graphen anschaut, dann fällt dieser einmal. daraufhin zwishcen -0.5 und 0.5 steigt er wieder um daraufhin wieder gegen 0 zu gehen.  Wie gespiegelt am Ursprung. Aber wie schreibe ich das auf, dass die Reihe für verschiedene a gegen verschiedene Werte konvergiert?
Ich hoffe man versteht mich. Sonst versuche ich mich noch weiter verständlich zu machen ;-)

Danke für die Hilfe schon einmal.

lg lene

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Do 04.01.2007
Autor: leduart

Hallo lene
> Für welche [mm]a\in\IR[/mm] konvergiert die Reihe
>  [mm]\bruch{a}{1+a^{2}}[/mm] ?
>  Hallo,
>
> Also ich habe schon herausgefunden, dass
>
> [mm]-\infty \le[/mm] a < -1 ... es geht gegen -0.5
>  -1 [mm]\le[/mm] a [mm]\le[/mm] 1 ... es geht gegen 0.5
>  1 < a [mm]\le \infty[/mm] ... es geht gegen 0.

Das ist keine Reihe! sondern ein ausdruck oder ne Funktion f(a)
Da macht es keinen Sinn zu fragen, wohin der Ausdruck konvergiert. für jedes endliche a hat er einen Wert, für a gegen [mm] \infty [/mm] geht er gegen 0.
#vielleicht hast du die Aufgabe nicht richtig aufgeschrieben?
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]