matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationkonvergenz?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - konvergenz?
konvergenz? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 28.07.2008
Autor: Surfer

Hallo,

wie ist denn bei folgendem Integral vorzugehen, um beurteilen zu können ob es konvergiert?

[mm] \integral_{2}^{\infty}{\bruch{1}{1+x^{3}} dx} [/mm]

komme hier nicht weiter!
lg Surfer

        
Bezug
konvergenz?: Idee
Status: (Antwort) fertig Status 
Datum: 18:54 Mo 28.07.2008
Autor: Loddar

Hallo Surfer!


Berechne hier:
[mm] $$\integral_{2}^{\infty}{\bruch{1}{1+x^3} \ dx} [/mm] \ = \ [mm] \limes_{A\rightarrow\infty}\integral_{2}^{A}{\bruch{1}{1+x^3} \ dx}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
konvergenz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Mo 28.07.2008
Autor: Surfer

Hi, schon mal danke für deinen schnellen Einsatz, aber mir fehlt gerade die Idee, den Ausdruck hinten zu integrieren, was ist zu substituieren oder muss sogar eine Universalsubstitution gemacht werden?

lg Surfer

Bezug
                        
Bezug
konvergenz?: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 19:13 Mo 28.07.2008
Autor: Loddar

Hallo Surfer!


Der erste Schritt ist eine MBPartialbruchzerlegung:
[mm] $$\bruch{1}{x^3+1} [/mm] \ = \ [mm] \bruch{1}{(x+1)*( \ ... \ )} [/mm] \ = \ ...$$

Den 2. Term (hier mit $( \ ... \ )$ angedeutet) erhältst Du mittels MBPolynomdivision.


Gruß
Loddar


Bezug
                                
Bezug
konvergenz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 28.07.2008
Autor: Surfer

Dann wäreer der zweite Teil, den man durch Polynomdivision erhält ein komplexer Teil da ich erhalte [mm] x_{2,3} [/mm] = [mm] \bruch{1}{2} \pm \bruch{\wurzel{-3}}{2} [/mm] ?

gibt es da nicht ne andere Methode irgendwie einen Grenzwert zu bestimmen oder so?

lg Surfer

Bezug
                                        
Bezug
konvergenz?: ohne Komplex
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 28.07.2008
Autor: Loddar

Hallo Surfer!


Da bist du schon einen Schritt zuweit gegangen. Du brauchst nicht unbedingt ins Komplexe hinein den Bruch zerlegen ...


Gruß
Loddar


Bezug
                        
Bezug
konvergenz?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mo 28.07.2008
Autor: schachuzipus

Hallo Surfer,

nur ergänzend:

es ist ja gar nicht nach dem Wert des Integrals gefragt, sondern nur nach der Konvergenz, also nur die Frage, ob es einen endlichen Wert hat oder gegen [mm] \infty [/mm] divergiert.

Schätze es doch gegen ein elementar zu berechnendes Integral ab, etwa so:

Es ist [mm] $1+x^3>x^3$, [/mm] also [mm] $\frac{1}{1+x^3}<\frac{1}{x^3}=x^{-3}$ [/mm]

Und [mm] $\int\limits_{2}^{\infty}{x^{-3} \ dx}$ [/mm] kannst du leicht berechnen ...


LG

schachuzipus

Bezug
                                
Bezug
konvergenz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 28.07.2008
Autor: Surfer

Wenn ich das ja integriere habe ich [- [mm] \bruch{1}{x^{2}}] [/mm] von 2 bis [mm] \infty [/mm]

also erhalte ich eingesetzt 0 + 1/4 = 1/4 oder ?
D.h. es konvergiert gegen 1/4 oder wie ist das jetzt zu verstehen?

lg und danke Surfer

Bezug
                                        
Bezug
konvergenz?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mo 28.07.2008
Autor: schachuzipus

Hallo Surfer,


> Wenn ich das ja integriere habe ich [- [mm]\bruch{1}{x^{2}}][/mm]
> von 2 bis [mm]\infty[/mm]

Fast, da fehlt ein Faktor [mm] $\frac{1}{2}$ [/mm]

>  
> also erhalte ich eingesetzt 0 + 1/4 = 1/4 oder ?

Mit dem fehlenden Faktor konvergiert das gegen [mm] $\frac{1}{8}$ [/mm]

> D.h. es konvergiert gegen 1/4 oder wie ist das jetzt zu
> verstehen?

Nein, das bedeutet, dass dein (kleineres) Integral einen Wert $< [mm] \frac{1}{8}$ [/mm] hat

Damit hast du eine Abschätzung nach oben für dein Integral, es kann nicht größer werden als [mm] $\frac{1}{8}$ [/mm]

Streng genommen müsstest du es noch nach unten abschätzen, etwa durch [mm] $\int\limits_{2}^{\infty}{\frac{1}{1+x^3} \ dx} [/mm] \ > [mm] \int\limits_{2}^{\infty}{\frac{1}{2x^3} \ dx}$, [/mm] um sicher zu gehen, dass dein Integral nicht gegen [mm] -\infty [/mm] abhaut


>  
> lg und danke Surfer

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]