matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergente/divergente Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - konvergente/divergente Folgen
konvergente/divergente Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergente/divergente Folgen: Tipps
Status: (Frage) beantwortet Status 
Datum: 17:13 Do 09.12.2010
Autor: Mathegirl

Aufgabe
Gib ein Beipiel an oder begründe, wenn es solche Beispiele nicht geben kann.

a) zwei divergente Folgen [mm] (a_n), (b_n), [/mm] wobei [mm] (a_n+b_n) [/mm] konvergent ist

b) [mm] (a_n) [/mm] konvergent, [mm] (b_n) [/mm] divergent und [mm] (a_n+b_n) [/mm] konvergent

c) [mm] (a_n) [/mm] unbeschränkt und [mm] (b_n) [/mm] konvergent, [mm] (a_n-b_n) [/mm] soll beschränkt sein

d) [mm] (a_n), (b_n) [/mm] wobei [mm] (a_n*b_n) [/mm] und [mm] (a_n) [/mm] konvergieren, aber [mm] (b_n) [/mm] nicht.

e) bestimme die Häufungspunkte: [mm] a_n= (-1)^n*\bruch{3}{4} [/mm]  und [mm] (b_n)= i^n+ \bruch{1}{2^n} [/mm]

Also irgendwie fällt mir das ganze hier echt schwer und ich komme nicht so richtig voran...aber ich poste erstmal meine bisherigen überlegungen

a) [mm] (a_n)=(-1)^n [/mm]   , [mm] (b_n)= (-1)^{(n+1)} [/mm]

b) muss doch divergent sein oder?

e) [mm] (b_n) [/mm] hat die Häufungswerte 1,i,-1,-i

so...der ganze adere Rest fällt mir leider sehr schwer!! Bräuchte ein paar Tipps!


Mathegirl

        
Bezug
konvergente/divergente Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Do 09.12.2010
Autor: schachuzipus

Hallo Mathegirl,

> Gib ein Beipiel an oder begründe, wenn es solche Beispiele
> nicht geben kann.
>
> a) zwei divergente Folgen [mm](a_n), (b_n),[/mm] wobei [mm](a_n+b_n)[/mm]
> konvergent ist
>
> b) [mm](a_n)[/mm] konvergent, [mm](b_n)[/mm] divergent und [mm](a_n+b_n)[/mm]
> konvergent
>
> c) [mm](a_n)[/mm] unbeschränkt und [mm](b_n)[/mm] konvergent, [mm](a_n-b_n)[/mm] soll
> beschränkt sein
>
> d) [mm](a_n), (b_n)[/mm] wobei [mm](a_n*b_n)[/mm] und [mm](a_n)[/mm] konvergieren,
> aber [mm](b_n)[/mm] nicht.
>
> e) bestimme die Häufungspunkte: [mm]a_n= (-1)^n*\bruch{3}{4}[/mm]
> und [mm](b_n)= i^n+ \bruch{1}{2^n}[/mm]
> Also irgendwie fällt mir
> das ganze hier echt schwer und ich komme nicht so richtig
> voran...aber ich poste erstmal meine bisherigen
> überlegungen
>
> a) [mm](a_n)=(-1)^n[/mm] , [mm](b_n)= (-1)^{(n+1)}[/mm] [ok]
>
> b) muss doch divergent sein oder?

Begründung?

>
> e) [mm](b_n)[/mm] hat die Häufungswerte 1,i,-1,-i [ok]

Und [mm](a_n)[/mm] ?

Betrachte die beiden Teilfolgen für gerades und ungerades n

>
> so...der ganze adere Rest fällt mir leider sehr schwer!!
> Bräuchte ein paar Tipps!

Bei d) nimm mal als [mm](a_n)[/mm] eine Nullfolge ...

Bei c) ist auch die konstante Folge [mm]0,0,0,....0[/mm] konvergent ...

>
>
> Mathegirl

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]