matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergente Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - konvergente Reihe
konvergente Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergente Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Di 15.06.2010
Autor: rml_

Aufgabe
[mm] \summe_{n=0}^{\infty} (-1)^n \left( \sqrt{n^2 +n +1} - \sqrt{n^2 - n +1} \right) [/mm]

mein lösungsweg:

leibniz-> [mm] \left( \sqrt{n^2 +n +1} - \sqrt{n^2 - n +1} \right) [/mm] muss nullfolge sein:

3 binomische formel:

[mm] \bruch{\left( \sqrt{n^2 +n +1} - \sqrt{n^2 - n +1} \right)*\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)} [/mm]

[mm] ->\bruch{(n^2 + n +1) - (n^2 - n +1)}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)} [/mm]

[mm] \bruch{2n}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)} [/mm]

bis hierhin richtig? wenn ja komm ich ab hier nciht weiter
ich hab ja noch ein n im zähler, was mach ich jetzt?

geht das:?
n* [mm] \bruch{2}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)} [/mm]

sprich das n rausziehn, denn dann wäre es ja n * eine nullfolge= 0

danke

        
Bezug
konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Di 15.06.2010
Autor: fred97


> [mm]\summe_{n=0}^{\infty} (-1)^n \left( \sqrt{n^2 +n +1} - \sqrt{n^2 - n +1} \right)[/mm]
>  
> mein lösungsweg:
>  
> leibniz-> [mm]\left( \sqrt{n^2 +n +1} - \sqrt{n^2 - n +1} \right)[/mm]
> muss nullfolge sein:

Wenn Du das Leibnizkriterium anwenden willst, so muß die Nullfolge auch fallend sein !

Ich verrate Dir jetzt schon: mit dem Leibnizkriterium kommst Du hier nicht weiter

>  
> 3 binomische formel:
>  
> [mm]\bruch{\left( \sqrt{n^2 +n +1} - \sqrt{n^2 - n +1} \right)*\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}[/mm]
>  
> [mm]->\bruch{(n^2 + n +1) - (n^2 - n +1)}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}[/mm]
>  
> [mm]\bruch{2n}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}[/mm]
>  
> bis hierhin richtig?

Ja

> wenn ja komm ich ab hier nciht weiter
>  ich hab ja noch ein n im zähler, was mach ich jetzt?
>  
> geht das:?
>   n* [mm]\bruch{2}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}[/mm]
>  
> sprich das n rausziehn


Kannst Du machen

> , denn dann wäre es ja n * eine
> nullfolge= 0


Unfug !



In  [mm]\bruch{2n}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}[/mm]  dividiere Zähler und Nenner mal durch n.

Siehst Du , dass die Folge ([mm]\bruch{2n}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}[/mm])  gegen 1 geht ?

Was bedeutet das für Deine Reihe ?

FRED

>  
> danke


Bezug
                
Bezug
konvergente Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Di 15.06.2010
Autor: rml_

nein sehe nicht das sie gegen 1 geht, aber wenn sie gegen eins geht dann ist die reihe divergent.



Bezug
                        
Bezug
konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 15.06.2010
Autor: fred97


> nein sehe nicht das sie gegen 1 geht

Nochmal: in  $ [mm] \bruch{2n}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)} [/mm] $  dividiere Zähler und Nenner durch n. Machs einfach mal !


> , aber wenn sie gegen
> eins geht dann ist die reihe divergent.

Richtig

FRED

>  
>  


Bezug
                                
Bezug
konvergente Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Di 15.06.2010
Autor: rml_

[mm] \bruch{\bruch{2}{\left( \sqrt{n^2 +n +1} + \sqrt{n^2 - n +1} \right)}}{n} [/mm]

sry aber ich hab keine ahnung wie ich das umformen soll

Bezug
                                        
Bezug
konvergente Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Di 15.06.2010
Autor: fred97

[mm] \bruch{\wurzel{n^2+n+1}}{n}= \bruch{\wurzel{n^2+n+1}}{\wurzel{n^2}}= \wurzel{\bruch{n^2+n+1}{n^2}}= \wurzel{1+1/n+1/n^2} [/mm]

FRED

Bezug
                                                
Bezug
konvergente Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Di 15.06.2010
Autor: rml_

ok danke ich habs gerafft:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]