matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskonv. folgen kompl. zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - konv. folgen kompl. zahlen
konv. folgen kompl. zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konv. folgen kompl. zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 02.12.2007
Autor: Schneckal36

Aufgabe
3. Zeigen sie: Jede Zahl z [mm] \in \IC [/mm] ist Nullstelle eines Polynoms vom Grad zwei über [mm] \IR [/mm] (d.h. eines Polynoms mit reellen Koeffizienten)

4. Zeigen sie: Ist [mm] (z_{n})_{n\in\IN} [/mm] eine konvergente Folge komplexer Zahlen, so ist [mm] (|z_{n}|)_{n\in\IN} [/mm] eine konvergente Folge reeller Zahlen. Gilt die Umkehrung?

ich hab überhaupt keinen plan wie ich da ansetzten soll... des find ich alles so unlogisch, ich kann des auch mathematisch irgendiwe nicht hinschreiben, vielleicht kann mir ja von euch einer helfen!
mfg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konv. folgen kompl. zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 So 02.12.2007
Autor: schachuzipus

Hallo Schneckal,

ihr hattet doch bestimmt den Satz, dass, wenn [mm] $z\in\IC$ [/mm] eine Nullstelle ist, so ist auch [mm] $\overline{z}$ [/mm] eine Nullstelle.

Nimm dir also eine beliebige komplexe Zahl [mm] $z=a+b\cdot{}i$ [/mm] her und konstruiere daraus dein Polynom:

Da $z, [mm] \overline{z}$ [/mm] Nullstellen sein sollen, kannst du das als Linearfaktoren schreiben:

[mm] $(x-z)(x-\overline{z})=(x-(a+b\cdot{}i))(x-(a-b\cdot{}i))=...$ [/mm]

Das verrechne mal...


Bei der anderen Aufgabe kannst du die konvergente komplexe Folge [mm] $z_n$ [/mm] schreiben als [mm] $z_n=x_n+i\cdot{}y_n$, [/mm] also in die (konvergenten) Folgen von Real- und Imaginärteil aufteilen.

Hierbei gilt mit [mm] $\lim\limits_{n\to\infty}z_n=z\, (=x+i\cdot{}y)\Rightarrow \lim\limits_{n\to\infty}x_n=x$ [/mm] und [mm] $\lim\limits_{n\to\infty}y_n=y$ [/mm]

Die Folge des Realteils von [mm] $z_n$ [/mm] konvergiert also gegen den Realteil von $z$ und genauso für den Imaginärteil.

Damit sollte die erste Richtung einfach sein.

Für die Rückrichtung kannst du dir ein nicht allzu schwieriges Gegenbsp überlegen.

Probiere ein bisschen mit einfachen, rein imaginären Folgen rum... ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]