matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskonv. e. alternierenden Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - konv. e. alternierenden Reihe
konv. e. alternierenden Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konv. e. alternierenden Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 10.12.2005
Autor: Faust

Hallo zusammen,
ich habe hier eine alternierende Reihe, dessen Konvergenz ich beweisen soll:

[mm] \bruch{1}{\wurzel{2}- \bruch{1}{\wurzel{2}}} [/mm] -  [mm] \bruch{1}{\wurzel{2}+ \bruch{1}{\wurzel{3}}}+ \bruch{1}{\wurzel{3}- \bruch{1}{\wurzel{3}}}- \bruch{1}{\wurzel{3}+ \bruch{1}{\wurzel{4}}}+ \bruch{1}{\wurzel{4}- \bruch{1}{\wurzel{4}}}- \bruch{1}{\wurzel{4}+ \bruch{1}{\wurzel{5}}} \pm [/mm] ...

Ich hab es mit dem Quotientenkriterium versucht, aber da kommt für q=1 raus und ich hab es mit dem Majorantenkriterium versucht, was aber auch nicht funktioniert hat.
Meine Ursprüngliche Idee war es mit dem Konvergenzkriterium von Lebniz zu versuchen, nur hat man da ja das Problem, dass man die Reihe in der form  [mm] \summe_{i=0}^{n} (-1)^{n}a_{n} [/mm] darstellen muss, wobei ich hier aber keine Ahnung habe wie ich das anstellen soll!

Kann mir da vielleicht bitte jemand helfen???
Vielen Dank im voraus
mfg
Faust

        
Bezug
konv. e. alternierenden Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 10.12.2005
Autor: PWoodstock

Wenn du mit Leibniz die Konvergenz zeigen willst, dann musst du deine Reihe in die Form $ [mm] \summe_{k=0}^{\infty} (-1)^k a_k [/mm] $ bringen und dann noch zeigen, dass [mm] a_k [/mm] eine monotone Nullfolge ist.
$ [mm] a_k [/mm] $ könntest du vielleicht so formulieren:
$ [mm] \bruch{1}{\wurzel{\bruch{k}{2}-\bruch{1+(-1)^{k+1}}{4}}+(-1)^{k+1}\wurzel{\bruch{1}{\bruch{k}{2}+\bruch{1+(-1)^{k}}{4}}} }$ [/mm]

$ [mm] \Rightarrow \summe_{k=4}^{\infty} (-1)^k \bruch{1}{\wurzel{\bruch{k}{2}-\bruch{1+(-1)^{k+1}}{4}}+(-1)^{k+1}\wurzel{\bruch{1}{\bruch{k}{2}+\bruch{1+(-1)^{k}}{4}}} } [/mm] $

Schöner ist 'vielleicht' statt [mm] $1+(-1)^{k+1}$ [/mm] auch Modulo zu verwenden: $k%2$ ;-) Dann na klar nicht durch 4 sondern nur noch durch 2.

Hoffe es hilft weiter^^°
lg chris

Bezug
        
Bezug
konv. e. alternierenden Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 13.12.2005
Autor: wulfen

Hallo.

Versuch´s doch mal mit ner Differenz zweier Summen. Wenn du dann für jede Summe die Konvergenz zeigen kannst, ist die Differenz doch auch konvergent, oder? Vielleicht täusch ich mich aber auch.

Die Differenz, die deine gesuchte alternierende Reihe ergibt, sieht dann so aus:

[mm] \summe_{i=2}^{n}\bruch{1}{\wurzel{n} - \bruch{1}{\wurzel{n}}}-\summe_{i=2}^{n}\bruch{1}{\wurzel{n} - \bruch{1}{\wurzel{n+1}}} [/mm]

Ich hoffe das hilft dir vielleicht ein bißchen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]