matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenkonjugierte 6x6
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - konjugierte 6x6
konjugierte 6x6 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konjugierte 6x6: tipp & idee
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:07 Mi 02.07.2008
Autor: eumel

Aufgabe
Seien A, B nxn-Matrizen über K, deren char. Polynome über K vollständig zerfallen. Es sei
[mm] i)\chi_A=\chi_B [/mm] , ii) [mm] \mu_A=\mu_B, [/mm] iii) [mm] def(A)=def(B)\forall \lambda\in [/mm] K.

a) ZZ: ist n <=6, so sind A und B konjugiert in [mm] M_n(K) [/mm]
b) für n=7 sei ein gegenbeispiel zu geben.

hallo, hätte auch nicht gedacht so schnell wieder ein post zumachen ^^

für a hätt ich gedacht:
konjugiert bedeutet ja in dem fall, wenn A*=B
für nichtkomplexe körper sag ich ma gilt logischerweise A=B.

das char. polynom zerfällt vollständig, also
[mm] \chi_A(x)=(x-\lambda_1)*...\*(x-\lambda_n)=\chi_B(x) [/mm]

mit den 3 bedingungen würde mir jetzt nach intensiver berechnung des letzten postings die jordanform einfallen, nur hätte ich dann kein plan, wie ich damit argumentieren kann...
ist konjugiert zu einander ähnlich zu "ähnlich in [mm] M_n(K)" [/mm] ?

falls ja, kann man dann nicht die gleichen erkenntnisse, die hier https://matheraum.de/read?t=424779 bei dem posting "ähnliche 5x5 matrizen" sind, einfach auf 6x6 matrizen anwenden?
dann bei b) eben nur ein gegenbeispiel finden, sodass das eben nicht klappt....

oder seh ich das falsch?

lieben gruß und tschüss
eumel


        
Bezug
konjugierte 6x6: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 02.07.2008
Autor: eumel

hier kommt es doch im prinzip auf die anzahl der eigenwerte an oder?

zerfällt das char.pol. vollst. in lin.fakt. so ist ja die länge von jedem jordanblock 1 und die jordanform von der matrix wär doch dann [mm] J=diag(\lambda_1 [/mm] .... [mm] \lambda_n) [/mm] oder?

andernfalls müsste man doch dann wieder die jordanform aus den informationen von
- geg. char.pol.
- mi-po
- defekt zu jedem eigenwert
aufbauen oder seh ich das falsch?

nur zu 7 fällt mir partout kein gegenbeispiel ein...
man brauch ja im prinzip nur 2 7x7 matrizen, wo [mm] \chi_{A,B},\mu_{A,B} [/mm] und [mm] def(\lambda_1*E-A), ...,def(\lambda_r*E-A), [/mm] 1<=r<=n übereinstimmen, aber eben eine ganz unterschiedliche Jordanform herauskommt....


Bezug
                
Bezug
konjugierte 6x6: Gegenbeispiel ...
Status: (Antwort) fertig Status 
Datum: 23:07 Mi 02.07.2008
Autor: michivbs

Im Prinzip stimmt das man muss sich halt immer wieder die JNF bauen. Bzw. im falle wenn alle Eigenwerte ungleich sind gehts mitm Invariantenteiler weil dann das MiPo gleich dem Char.Pol. ist (wegen gleicher Nullstellen im Char.Pol. und MiPo). Dann ist [mm] c_A(n) [/mm] = [mm] \chi_A [/mm] und ähnlichkeit folgt aus der gleichheit der Invariantenteiler. Wenn zwei EW gleich sind gehts damit auch noch dann muss mit JNF argumentieren. Das gibt ziemlich viele Fallunterscheidungen... aber das meiste ist analog. Ein Gegenbeispiel ist: [mm] \lambda_1 [/mm] = ... = [mm] \lambda_7 [/mm] =: [mm] \lambda [/mm] . DAnn ist MiPo [mm] (X-\lambda)^r [/mm] . Setze r=3 . Sei 3=dim [mm] V(\lambda, [/mm] A) . Dann kann die JNF entweder aus zwei 3x3 und einem 1x1 Kästchen bestehen (sagen wir A) und JNF(B) dann aus einem 3x3 und zwei 2x2 . => nicht ähnlich


mfG Michi

Bezug
        
Bezug
konjugierte 6x6: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Do 03.07.2008
Autor: eumel

ich hab das jetzt so gemacht:
für alle n=1,2,..,6 die fälle:
-1 EW + 1EV, 1 EW + 2EV,....,1EW+ n EV
- 2 "
.
.
-n EW
die jeweiligen jordanmatrizen aufgeschrieben und dann im schlusssatz das geschrieben:
da eben für n <=6 die jordanblöcke eindeutig bestimmt sind bis auf permutation sind A und B dann folglich ähnlich/konjugiert.

hftl reichte das aus....

schönen abend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]