matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeskongruent?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - kongruent?
kongruent? < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kongruent?: kongruente matrizen
Status: (Frage) beantwortet Status 
Datum: 07:47 So 12.08.2007
Autor: bjoern88

Aufgabe
Sind folgende matrizen konruent bzw. ähnlich?
[mm] \pmat{ 1 & 0 \\ 0 & 0 } [/mm] = c [mm] \pmat{ 1 & 0 \\ 1 & 0 } [/mm] = d

Das sie ähnlich sind prüfe ich über das charakteristische Polynom, das ist mir klar.
Kongruenz prüft man doch durch suchen einer Normalform
da die 1. Matrix eine symmetrisch matrix ist sie kongruent zu einer Diagonalmatrix = Normalform in der alle diagonaleinträge entweder 1,-1 oder 0 sind.
Die 2. Matrix ist weder symmetrisch noch alternierend und für alle anderen matrizen habe ich keine Normalform bzgl kongruenz kennengelernt somit kann ich nicht ausschließen,dass es nicht eine invertierbatre Matrix S gibt für die gilt S^TdS = c  
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
kongruent?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 So 12.08.2007
Autor: angela.h.b.


> Sind folgende matrizen konruent bzw. ähnlich?
>  [mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm] = c [mm]\pmat{ 1 & 0 \\ 1 & 0 }[/mm] = d
>  Das sie ähnlich sind prüfe ich über das charakteristische
> Polynom, das ist mir klar.
>  Kongruenz prüft man doch durch suchen einer Normalform

Hallo,

ich würde es mir hier sehr einfach machen.

"C Konguent D"  bedeutet doch, daß es eine reg. Matrix S gibt mit  [mm] S^t*C*S=D. [/mm]

Sei [mm] S=\pmat{ a & b \\ c & d }. [/mm]

Nun würde ich schauen, ob [mm] \pmat{ a & c \\ b & d }*\pmat{ 1 & 0 \\ 0 & 0 }*\pmat{ a & b \\ c & d }=\pmat{ 1 & 0 \\ 1 & 0 } [/mm] eine Lösung hat.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]