matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexer Zeiger in Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - komplexer Zeiger in Normalform
komplexer Zeiger in Normalform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexer Zeiger in Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Fr 22.01.2010
Autor: phily

Aufgabe
Ein komplexer Zeiger sei durch [mm] z_{1}=\bruch{j}{1-(2+j)^{2}} [/mm] gegeben.

a) Drücken SIe ihn durch seine kartesische Normalform aus.
b) Für welchen Wert von a bilden der Zeiger [mm] z_{2}= [/mm] a+3j und [mm] z_{1} [/mm] einen rechten Winkel?

Hey.
Ich habe bei dieser Aufgabe schon Probleme mit der kartesischen Normalform, die ja x-j*y lautet. Doch wie überführe ich den gegebenen Zeiger in diese Form?? Muss ich da mit dem konjugiert komplexen Nenner arbeiten oder so?? Kann mir da jemand helfen?
Und bei Aufgabe b) könnt ich mir vorstellen, dass ich mit der trigonometrischen Form arbeiten muss...allerding fehlt mir da komplett der Ansatz.
Wäre echt um jede Hilfe dankbar!!
Gruß phily

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexer Zeiger in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Fr 22.01.2010
Autor: fencheltee


> Ein komplexer Zeiger sei durch [mm]z_{1}=\bruch{j}{1-(2+j)^{2}}[/mm]
> gegeben.
>  
> a) Drücken SIe ihn durch seine kartesische Normalform
> aus.
>  b) Für welchen Wert von a bilden der Zeiger [mm]z_{2}=[/mm] a+3j
> und [mm]z_{1}[/mm] einen rechten Winkel?
>  Hey.
>  Ich habe bei dieser Aufgabe schon Probleme mit der
> kartesischen Normalform, die ja x-j*y lautet. Doch wie
> überführe ich den gegebenen Zeiger in diese Form?? Muss
> ich da mit dem konjugiert komplexen Nenner arbeiten oder
> so?? Kann mir da jemand helfen?

also erstmal die klammer auflösen, zusammenfassen im nenner, dann komplex erweitern zum 3. binom, und alles zusammenfassen

>  Und bei Aufgabe b) könnt ich mir vorstellen, dass ich mit
> der trigonometrischen Form arbeiten muss...allerding fehlt
> mir da komplett der Ansatz.
>  Wäre echt um jede Hilfe dankbar!!
>  Gruß phily

mh, wenn man mit j multipliziert, entspricht das einem um 90° vorwärts gedrehten zeiger, eine mit -j um 90° rückwärts.. wenn dann der gedrehte zeiger ein vielfaches des anderen zeigers ist, so sollten sie senkrecht stehen, wenn ich mich grad nicht ganz täusche ;-)

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

gruß tee

Bezug
                
Bezug
komplexer Zeiger in Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 07.03.2010
Autor: Zaibatsi


>  mh, wenn man mit j multipliziert, entspricht das einem um
> 90° vorwärts gedrehten zeiger, eine mit -j um 90°
> rückwärts.. wenn dann der gedrehte zeiger ein vielfaches
> des anderen zeigers ist, so sollten sie senkrecht stehen,
> wenn ich mich grad nicht ganz täusche ;-)

Kann ich das (Aufgabe b) vielleicht einmal vorgerechnet bekommen? Ich hatte mir vor Monaten die Lösung mal erarbeitet, aber die ist weg, jetzt komm ich einfach nicht mehr drauf :(

Ich weiss nur noch, dass es ne recht kurze einfache Umstellungsgeschichte war

Bezug
                        
Bezug
komplexer Zeiger in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Mo 08.03.2010
Autor: fred97

Sind [mm] $z_1= x_1+jy_1$ [/mm]  und [mm] $z_2= x_2+jy_2$ [/mm]  gegeben , so bilden deren Zeiger einen rechten Winkel [mm] \gdw $x_1x_2+y_1y_2 [/mm] = 0$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]