matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenkomplexe zahlen euler form
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "komplexe Zahlen" - komplexe zahlen euler form
komplexe zahlen euler form < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe zahlen euler form: pi kreis
Status: (Frage) beantwortet Status 
Datum: 13:40 Mi 09.03.2011
Autor: blackylk

Aufgabe
[mm] e^{\bruch{5*\pi*i}{4}}=e^{\bruch{1*\pi*i}{4}}*e^{\pi*i}=e^{\bruch{-3*\pi*i}{4}}=-e^{\bruch{1*\pi}{4}} [/mm]

Ich verstehe die Beziehung zu [mm] e^{\bruch{5*\pi*i}{4}}=e^{\bruch{1*\pi*i}{4}}*e^{\pi*i} [/mm]

aber Warum ist [mm] e^{\bruch{1*\pi*i}{4}}*e^{\pi}=e^{\bruch{-3*\pi*i}{4}} [/mm]

und [mm] e^{\bruch{-3*\pi*i}{4}}=-e^{\bruch{i*\pi}{4}} [/mm]

Gibt es eien Seite wo das verständlich erklärt wird. Ich habe noch grob einen Graphen mit der Skalierung von [mm] \pi [/mm] im Kopf kann mich allerdings nicht mehr daran entsinnen wie das ging.

        
Bezug
komplexe zahlen euler form: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mi 09.03.2011
Autor: kamaleonti

Hallo blackylk,
>
> [mm]e^{\bruch{5*\pi*i}{4}}=e^{\bruch{1*\pi*i}{4}}*e^{\pi*i}=e^{\bruch{-3*\pi*i}{4}}=-e^{\bruch{1*\pi}{4}}[/mm]
>  Ich verstehe die Beziehung zu
> [mm]e^{\bruch{5*\pi*i}{4}}=e^{\bruch{1*\pi*i}{4}}*e^{\pi*i}[/mm]
>  
> aber Warum ist
> [mm]e^{\bruch{1*\pi*i}{4}}*e^{\pi}=e^{\bruch{-3*\pi*i}{4}}[/mm]

Du kennst doch sicherlich die Polardarstellung für komplexe Zahlen:
[mm] \qquad $z=re^{i\varphi}=r(\cos\varphi+i\sin\varphi)$ [/mm]
Hier ist r=1. Die Winkelfunktionen haben eine Periodenlänge von [mm] 2\pi. [/mm] Daher ist [mm] e^{\bruch{5\pi*i}{4}}=e^{\bruch{-3\pi*i}{4}} [/mm]

>  
> und [mm]e^{\bruch{-3*\pi*i}{4}}=-e^{\bruch{i*\pi}{4}}[/mm]

Hier kannst du mit der gleichen Vorstellung arbeiten. Die Periode wurde um [mm] \pi [/mm] verschoben. Das bedeutet für die Winkelfunktionen
[mm] \qquad $\sin(\varphi+\pi)=-\sin(\varphi)$ [/mm]
[mm] \qquad $\cos(\varphi+\pi)=-\sin(\varphi)$ [/mm]

>  
> Gibt es eien Seite wo das verständlich erklärt wird. Ich
> habe noch grob einen Graphen mit der Skalierung von [mm]\pi[/mm] im
> Kopf kann mich allerdings nicht mehr daran entsinnen wie
> das ging.

Gruß

Bezug
        
Bezug
komplexe zahlen euler form: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mi 09.03.2011
Autor: fred97


>
> [mm]e^{\bruch{5*\pi*i}{4}}=e^{\bruch{1*\pi*i}{4}}*e^{\pi*i}=e^{\bruch{-3*\pi*i}{4}}=-e^{\bruch{1*\pi}{4}}[/mm]
>  Ich verstehe die Beziehung zu
> [mm]e^{\bruch{5*\pi*i}{4}}=e^{\bruch{1*\pi*i}{4}}*e^{\pi*i}[/mm]
>  


es gilt für z, w [mm] \in \IC: e^{z+w}=e^ze^w [/mm]


> aber Warum ist
> [mm]e^{\bruch{1*\pi*i}{4}}*e^{\pi}=e^{\bruch{-3*\pi*i}{4}}[/mm]


[mm] e^{i \pi}=-1 [/mm]

FRED

>  
> und [mm]e^{\bruch{-3*\pi*i}{4}}=-e^{\bruch{i*\pi}{4}}[/mm]
>  
> Gibt es eien Seite wo das verständlich erklärt wird. Ich
> habe noch grob einen Graphen mit der Skalierung von [mm]\pi[/mm] im
> Kopf kann mich allerdings nicht mehr daran entsinnen wie
> das ging.


Bezug
                
Bezug
komplexe zahlen euler form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Mi 23.03.2011
Autor: blackylk

tut mir leid das ich nicht vorher geantwortet habe(vergessen und später auch selbst draufgekommen). danke nochmals für die tipps.  habe mich teilweise mit den wertebereich verhunzt, weil ich das ganze mal von [mm] [0,2*\pi] [/mm] und mal von [mm] [-\pi,\pi [/mm] ] betrachtet hab.

Bezug
        
Bezug
komplexe zahlen euler form: Einheitskreis
Status: (Antwort) fertig Status 
Datum: 15:01 Mi 09.03.2011
Autor: rennradler

[mm] $e^{i\phi}= cos\phi [/mm] + [mm] isin\phi$ [/mm] mit [mm] $\phi \in \IR$ [/mm] beschreibt genau den Einheitskreis in der komplexen Zahlenebene. Mal es Dir einfach auf und dann siehst Du es sofort. Beachte, daß positive Winkel gegen den Uhrzeigersinn (von der reellen Achse aus) aufgetragen werden und negative im Uhrzeigersinn.

Bezug
                
Bezug
komplexe zahlen euler form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Mi 09.03.2011
Autor: fred97

Hallo rennradler,
willkommen im Matheraum. Eine Bitte:

Du hast angegeben: Math. Background: Klasse 1 Grundschule .

Das ist albern. Bitte ändere das in Deinem Profil

Gruß FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]