matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - komplexe zahlen
komplexe zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe zahlen: ungleichung
Status: (Frage) beantwortet Status 
Datum: 18:47 So 04.03.2007
Autor: hooover

Aufgabe
Finde alle komplexen Lösungen z, welche die Ungleichung erfüllen. Skizziere die Lösungsmenge.

|z+1|<2

Hallo liebe Leute, ich zeige euch mal meinen Ansatz.
Mein Problem liegt hier bei der Skizze. Wie erhale ich den Radius und den Mittelpunkt?

|z+1|<2

da ja [mm] |z|=\sqrt{x^2+y^2} [/mm] ist habe ich es wie folgt umgeschrieben

|x+iy+1|<2

|(x+1)+iy|<2

[mm] \sqrt{(x+1)^2+y^2}<2 [/mm]

[mm] (x+1)^2+y^2<4 [/mm]      

ich habe hier ne Formel für den Radius welche besagt:

[mm] r=\sqrt{x^2+y^2}=|z| [/mm] was ja auf diesen Fall angewand diese sein müßte

[mm] \sqrt{x^2+y^2}
[mm] \sqrt{(x+1)^2+y^2}<2 [/mm]         also ist der Radius 2 oder r<2

dann halt die Kreimittelpunktsgl. verwenden.

[mm] x^2+y^2=r^2 [/mm]

[mm] (x+1)^2+y^2=4 [/mm]  und nun komme ich nicht mehr weiter. was mach denn hiermit. x und y sind mir ja nicht bekannt.

vielen Dank schon mal für eure Hilfe

gruß hooover

        
Bezug
komplexe zahlen: Kreisgleichung
Status: (Antwort) fertig Status 
Datum: 19:15 So 04.03.2007
Autor: Loddar

Hallo hooover!


Du bist doch so gut wie fertig ...

Die Ungleichung [mm](x+1)^2+y^2<4[/mm] entspricht ja einer Kreisgleichung um den Mittelpunkt $M \ [mm] \left( \ -1 \ ; \ 0 \ \right)$ [/mm] mit dem Radius $r \ = \ 2$ .

Durch das Ungleichheitszeichen $<_$ sind hier also alle Punkte gemeint, welche [/b]innerhalb[/b] des Kreisumfanges liegen.


Gruß
Loddar


Bezug
                
Bezug
komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 So 04.03.2007
Autor: hooover

Vielen Dank für die Lösung,

aber wie genau bekomme ich denn Kreimittelpunkt M (-1,0)?



Bezug
                        
Bezug
komplexe zahlen: "ablesen"
Status: (Antwort) fertig Status 
Datum: 19:25 So 04.03.2007
Autor: Loddar

Hallo hooover!


Den Kreismittelpunkt $M \ [mm] \left( \ x_M \ ; \ y_M \ \right)$ [/mm] kannst Du doch unmittelbar aus der Kreisgleichung ablesen.

Diese lautet allgemein:   [mm] $\left(x-x_M\right)^2+\left(y-y_M\right)^2 [/mm] \ = \ [mm] r^2$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
komplexe zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 So 04.03.2007
Autor: hooover

Oh,...

Vielen Dank Loddar!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]