matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - komplexe zahlen
komplexe zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:36 Fr 03.02.2006
Autor: asuka

Aufgabe
Bestimmen Sie alle Lösungen z [mm] \in \IC [/mm] der Gleichung

|(2 + i) z | =  | z - 1 |

Welche geometrische Gestalt hat die Menge der Lösungen in der komplexen Ebene

Okay das ist die Aufgabe soweit. Ich habe einen kleinen Lösungsansatz.
Weiß aber nicht wirklich ob der in die richtige Richtung geht.

|(2 + i) (x + iy) | = | x + iy - 1 |        erstmal alle z ersetzt

|(2x + 2iy + ix - y | = | x + iy - 1 |     die klammern ausmultipliziert

Tja und jetzt steh ich etwas auf dem schlauch. Ich weiß nicht so recht was ich mit den beträgen anstellen soll.

Kann mir da jemand einen tipp geben?

Gruß asuka


        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 03.02.2006
Autor: DerHein

Es gilt [mm] $|z|^2=z \bar{z}$. [/mm]

mfg Heinrich

Bezug
                
Bezug
komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Fr 03.02.2006
Autor: asuka

ähem...ja

Also das hilft mir jetzt leider nicht wirklich weiter. Ich weiß nicht wie ich das auf diese aufgabe anwenden soll.

Gruß asuka

Bezug
                        
Bezug
komplexe zahlen: Tipp zum Tipp
Status: (Antwort) fertig Status 
Datum: 12:57 Fr 03.02.2006
Autor: banachella

Hallo!

Unter anderem gilt auch [mm] $|z-1|^2=(z-1)(\bar [/mm] z-1)$...

Gruß, banachella

Bezug
        
Bezug
komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Fr 03.02.2006
Autor: Hugo_Sanchez-Vicario

Hallo asuka,

hier ein anderer Vorschlag:
$|(2+i)z|$ = [mm] $|2+i|\cdot|z|$ [/mm] = [mm] $\sqrt{5}\cdot|z-0|$. [/mm]

Aufgrund dieser Umformung bist du in der Lage, []diese Information über gewisse Geometrische Formen in der Komplexen Ebene auszunutzen.

Hugo

Bezug
        
Bezug
komplexe zahlen: ist das richtig?
Status: (Frage) beantwortet Status 
Datum: 13:36 So 05.02.2006
Autor: asuka

Danke für die Tipps und Hilfestellungen :)

Habe mich jetzt noch mal mit der Aufgabe beschäftigt und einen Lösungsweg gefunden. Bin mir aber nicht sicher ob der richtig ist. Wäre nett wenn jemand mal drüber schauen könnte.

| (2+ i) z | = |z - 1|       z durch x + iy ersetzten

| (2 + i) (x + iy) | = |x + iy - 1 |     links ausmultiplizieren

| 2x + 2iy + ix - y | = | (x - 1) + iy |   nach real und imaginärteil sortieren

| (2x - y) + (ix + 2iy)| = | (x - 1) + iy |   quadrieren

[mm] \wurzel{(2x - y)² + (x + 2y)²} [/mm] =  [mm] \wurzel{(x - 1)² + y²} [/mm]   auflösen

4x² - 4xy + y² + x² + 4xy + 4y² = x² - 2x + 1 + y²    

4x² + 4y² = -2x + 1

4x² + 2x + 4y² = 1

x² + [mm] \bruch{1}{2}x [/mm] + y² = [mm] \bruch{1}{4} [/mm]     quadratische ergänzung mit  [mm] \bruch{1}{4} [/mm]

(x² + [mm] \bruch{1}{2}x [/mm] + [mm] \bruch{1}{4}) [/mm] + y² = [mm] \bruch{1}{4} [/mm] + [mm] \bruch{1}{4} [/mm]

(x + [mm] \bruch{1}{2})² [/mm] + y² = [mm] \bruch{1}{2} [/mm]

(x + [mm] \bruch{1}{2})² [/mm] + (y + 0)² = [mm] (\bruch{1}{\wurzel{2}})² [/mm]

damit würde ich hier nach der Formel für die geometrische form eines Kreises

(x -  [mm] x_{0})² [/mm] + (y - [mm] y_{0})² [/mm] = r²

schließen.

Ich habe immer schon ein problem mit quadratischen ergänzungen gehabt also bin ich mir sehr unsicher ob ich hier alles richtig gemacht habe.

Gruß asuka

Bezug
                
Bezug
komplexe zahlen: Sieht gut aus ...
Status: (Antwort) fertig Status 
Datum: 14:05 So 05.02.2006
Autor: Loddar

Hallo asuka!


Ich habe keinen Fehler entdecken können! [daumenhoch]


> | (2x - y) + (ix + 2iy)| = | (x - 1) + iy |   quadrieren

Allerdings wird hier die Betragsdefinition angewandt ...


  

> [mm]\wurzel{(2x - y)² + (x + 2y)²}[/mm] =  [mm]\wurzel{(x - 1)² + y²}[/mm]  

... und jetzt erst quadriert.


Gruß
Loddar


Bezug
                        
Bezug
komplexe zahlen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 So 05.02.2006
Autor: asuka

Danke!

Dann bin ich ja beruhigt und freu mich das ich wenigstens jetzt einmal richtig ergänzt habe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]