matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - komplexe polynome
komplexe polynome < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe polynome: komplexe nullstellen
Status: (Frage) beantwortet Status 
Datum: 23:17 Mo 07.05.2007
Autor: bjoern.g

Aufgabe
[mm] p(z)=z^2(z^2+2z+1)*(z^5-2j-2) [/mm]

bestimmen sie alle komplexen nullstellen und geben sie sie in expotentialfkt. an

habe es irgendwie über das hornerschema versucht komme aber nciht zu einer lösung :(

hi ich hab leider keine ahnung wie das mit komplexen nullstellen funktionieren soll kann mir da einer weiterhelfen? wäre sehr dankbar :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
komplexe polynome: Faktorzerlegung
Status: (Antwort) fertig Status 
Datum: 23:29 Mo 07.05.2007
Autor: Loddar

Hallo Björn,

[willkommenmr] !!


Durch die (teilweise) faktorisierte Form bist Du doch gar nicht soweit von der Lösung entfernt.

[aufgemerkt] Ein Produkt ist doch genau dann gleich Null, wenn (mind.) einer der Faktoren gleich Null wird.


Damit musst Du nun also folgenden Gleichungen untersuchen:

[mm] $z^2 [/mm] \ = \ 0$     oder     [mm] $z^2+2z+1 [/mm] \ = \ [mm] (z+1)^2 [/mm] \ = \ 0$     oder     [mm] $z^5-2j-2 [/mm] \ = \ 0$

[mm] $\gdw$ [/mm]    $|z| \ = \ 0$     oder     $|z+1| \ = \ 0$     oder     $z \ = \ [mm] \wurzel[5]{2j+2}$ [/mm]

Für die letzte Gleichung schlage ich Dir mal die []MOIVRE-Formel vor:

[mm] $\wurzel[n]{z} [/mm] \ = \ [mm] \wurzel[n]{r}*\left[\cos\left(\bruch{\varphi+k*2\pi}{n}\right)+i*\sin\left(\bruch{\varphi+k*2\pi}{n}\right)\right]$ [/mm]   mit   $k \ =\ 0...(n-1)$


Gruß
Loddar


Bezug
                
Bezug
komplexe polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Mo 07.05.2007
Autor: bjoern.g

ja so hab ichs auch probiert aber die die letzte formel bekomme ich doch nicht automatisch alle nullstellen von [mm] z^5 [/mm] oder ? sondern das ist einfach ne graphische konstruktion

die anderen nullstellen sind klar

[mm] z^2 [/mm] = 2 nullstellen bei 0

die andere kann ich per pq formel lösen

und die [mm] z^5 [/mm] mit der moivre oder wie die heist dachte irgendwie dadurch komm ich auf so ein graphisches ergebnis was aber nicht zwanghaft den nullstellen entspricht

Bezug
                        
Bezug
komplexe polynome: sind Nullstellen
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 07.05.2007
Autor: Loddar

Hallo Björn!


Doch, die Lösungen gemäß der MOIVRE-Formel sind dann 5 weitere Nullstellen Deines Polynoms.


Gruß
Loddar


Bezug
                                
Bezug
komplexe polynome: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:41 Mo 07.05.2007
Autor: bjoern.g

ok und dann ist noch die frage welche nullstellen gleich sind .....

von den komplexen

das wäre dann gemäß

z0 und -z2
z1 und -z3

oder

Bezug
                                        
Bezug
komplexe polynome: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 10.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]