matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe ebene
komplexe ebene < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Do 06.10.2011
Autor: Valerie20

Aufgabe
Zeichnen Sie in der Komplexen Ebene:

M={ [mm] z\in\IC [/mm] | 0 [mm] \le [/mm] Re {jz} [mm] \le1 [/mm] }

Hallo!
Warum stellt die Menge in der komplexen Ebene eine Parallele zur x-Achse im Abstand 1 dar?
Wenn ich das ausmultipliziere:

0 [mm] \le [/mm] Re {j(x+jy)} [mm] \le [/mm] 1
[mm] \gdw [/mm] 0 [mm] \le [/mm] Re {jx-y} [mm] \le [/mm] 1
[mm] \gdw [/mm] 0 [mm] \le [/mm] -y [mm] \le [/mm] 1
[mm] \gdw [/mm] 0 [mm] \ge [/mm] y [mm] \ge [/mm] 1

"y" ist doch Reell? Müsste das nicht eine parallele zur y-Achse im Abstand 1 sein?

gruß






        
Bezug
komplexe ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 06.10.2011
Autor: Harris

Hi!

Dir ist ein kleiner Rechenfehler unterlaufen:

[mm] $-1\leq [/mm] y [mm] \leq [/mm] 0$ muss das heißen.

Weiterhin ist die Menge aller komplexen Zahlen, die diese Ungleichung erfüllen, keine Gerade, sondern eine durch Geraden eingegrenzte Menge.

Zum Ergebnis:
y ist ja der Imaginärteil deiner zu M gehörigen komplexen Zahl. Das darfst du nicht vergessen!

In M sind also alle Zahlen enthalten, deren Imaginärteil zwischen (einschließlich) 0 und -1 liegt. Zeichne also eine Parallele zur Reellen Achse (x-Achse) durch den Punkt $-j$ und schraffiere den Bereich, der zwischen der reellen Achse und der Parallelen liegt.

"y" ist doch Reell? Müsste das nicht eine parallele zur y-Achse im Abstand 1 sein?

Ja, y ist reell, da du z=x+jy geschrieben hast. Realteil und Imaginärteil sind immer reell, der Imaginärteil wird erst durch Multiplikation mit j wirklich imaginär.
Und wäre der Bereich durch eine parallele zur y-Achse begrenzt, so wären ja keine komplexen Zahlen mit großem Realteil in der Menge enthalten. Durch die Betrachtung des Realteils von [mm] $j\cdot [/mm] z$ fliegt jedoch der Ursprüngliche Realteil raus, dieser kann also jeden Wert annehmen.

Hoffe, deine Frage ist geklärt.

Grüße,
Harris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]