matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe Zahlen Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - komplexe Zahlen Ableitung
komplexe Zahlen Ableitung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen Ableitung: Frage
Status: (Frage) beantwortet Status 
Datum: 11:43 Mo 11.07.2005
Autor: espa

Guten Tag,

ich möchte gerne wissen,ob einer von Ihnen mir sagen kann, an welchen Stellen die Abbildung von  [mm] \IC [/mm] nach [mm] \IC [/mm] mit z wird abgebildet auf z adjungiert (also mit dem Strich drüber) differenzierbar ist und wie dort die Ableitungen lauten.

Vielen herzlichen Dank für Ihre Hilfe.

Zuletzt versichere ich Ihnen: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexe Zahlen Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Mo 11.07.2005
Autor: Julius

Hallo espa!

Diese Funktion [mm] $f(z)=\bar{z}$ [/mm]  ist an keiner Stelle komplex differenzierbar. Man sieht das sofort über die CR-Differentialgleichungen, kann es aber auch direkt nachweisen.

Sei [mm] $z_0=x_0+iy_0$ [/mm] beliebig.

Dann gilt für [mm] $z_n=x_n+iy_0$ [/mm] mit [mm] $\lim\limits_{n \to \infty}x_n=x_0$: [/mm]

[mm] $\frac{f(z_n) - f(z_0)}{z_n-z_0} [/mm] = [mm] \frac{x_n-x_0}{x_n-x_0} [/mm] = 1$,

also auch:

[mm] $\lim\limits_{n \to \infty} \frac{f(z_n) - f(z_0)}{z_n-z_0} [/mm] =1$.

andererseits aber für [mm] $\tilde{z_n}=x_0+iy_n$ [/mm] mit [mm] $\lim\limits_{n \to \infty} y_n=y_0$: [/mm]

[mm] $\frac{f(\tilde{z_n}) - f(z_0)}{\tilde{z_n}-z_0} [/mm] = [mm] \frac{-iy_n+iy_0}{iy_n-iy_0} [/mm] = -1$,

also auch:

[mm] $\lim\limits_{n \to \infty} \frac{f(\tilde{z_n}) - f(z_0)}{\tilde{z_n}-z_0} [/mm] =-1$.

An die Mods: Bitte nach Uni-Funktionentheorie verschieben, Danke! :-)

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]