matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikkomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - komplexe Zahlen
komplexe Zahlen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mo 04.06.2007
Autor: laravi

Aufgabe
Komplexe zahlen
a) Berechnen Sie [mm] \wurzel[4]{-2+2i} [/mm]

b) Berechnen Sie ln(i)+2ln(1+i)+4πiln(2)

c) Es sei z=x+iy mit [mm] x,y\in\IR [/mm] . Berechnen sie den wert von [mm] e^{iz} [/mm]

Hallo,
ich hab leider keine ahnung wie ich mit den komplexen zahlen die beiden aufgaben lösen soll und bräuchte daher unbedingt einen tipp, wie ich mit den aufgaben überhaupt erstmal anfangen muss, um einer lösung nahe zu kommen :(

für a) hab ich soweit erstmal nur den ansatz, dass ich weiß:

(a,b)(a,b) = (a²-b²,2ab) = -2+2i

daraus folgt also, dass a²-b²=+2 und 2ab= -2i sein muss.. aber leider weiß ich nun nicht wie ich weiterkomm oder ob das überhaupt der richtige weg ist..
und bei den anderen beiden aufgaben verzweifel ich hier momentan komplett, hab bisher nirgendwo etwas hilfreiches gefunden

ich hoffe ihr könnt mir helfen


ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Mo 04.06.2007
Autor: leduart

Hallo
kennst du die Darstellung der komplexen Zahlen z=x+iy durch [mm] z=r*e^{i\phi} [/mm] oder [mm] z=r*(cos\phi [/mm] + [mm] i*sin\phi? [/mm] mit r=|z| und [mm] tan\phi=y/x [/mm] ?
dann ist das Wurzelziehen leicht: teile [mm] \phi [/mm] durch 4, [mm] (2\pi+\phi) [/mm] durch 4 usw, du hast immer 4 Werte bei 4ten Wurzeln und natürlich noch  [mm] \wurzel[4]{r}, [/mm]
zu b) und c) siehe []  hier  

Gruss leduart

Bezug
                
Bezug
komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Mo 04.06.2007
Autor: laravi

erstmal danke für die schnelle antwort und nein, die darstellung der komplexen zahlen kannte ich so nicht :/

r=|z| das bedeutet r= [mm] \wurzel{8} [/mm]
und aus [mm] tan\phi=y/x [/mm] folgt dann [mm] tan\phi=-1 [/mm] und somit [mm] \phi=-45 [/mm] oder wieder was falsch dran?

Bezug
                        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mo 04.06.2007
Autor: leduart

Hallo
richtig, ich rechne lieber mit pos. Winkeln, also 135° oder noch besser [mm] 3/4\pi. [/mm]
Wenn du irgendeine Darst. von komplexen Zahlen kennst, mal sie auf, dann siehst du die Darstellung mit [mm] r*(cos\phi+i*sin\phi) [/mm] direkt.
dass sich beim ultiplizieren die Winkel addieren, beim quadrieren also verdoppeln usw solltest du auch wissen oder ausprobieren!
Gruss leduart

Bezug
                                
Bezug
komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Mo 04.06.2007
Autor: laravi

ok.. wahrscheinlich werden die fragen immer dümmer, aber entweder ich steh momentan komplett auf dem schlauch oder ich denk zu verquer..

also ich hab jetzt r und nun ja auch den winkel. wie mach ich denn jetzt weiter? :/
wenn ich [mm] \phi [/mm] durch 4 teil hab ich für den teil die wurzel gezogen, nur auf was komm ich denn dann? also genauergesagt wie geb ich dann die endlösung an?

lg



danke, ich hab glaub ich die lösung.. groschen ist gefallen, muss das r und [mm] \phi [/mm] ja einfach nur noch einsetzen und dann alles ein wenig vereinfachen..

danke für die hilfe, schönen abend noch

laravi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]