matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - komplexe Zahlen
komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:17 Mo 12.02.2007
Autor: Idale

Aufgabe
[mm] \wurzel[3]{cos(135°) + isin(135°)} [/mm]

Hi,

wir sollen alle Werte von [mm] \wurzel[3]{cos(135°) + isin(135°)} [/mm] berechnen...und dazu ab ich ein, zwei kleine fragen...

für die lösung benötigt man ja die Formel [mm] $W_k [/mm] = [mm] \wurzel[n]{r} [/mm] (cos [mm] \bruch{\alpha +2k\pi}{n} [/mm] + i sin [mm] \bruch{\alpha +2k\pi}{n})$ [/mm]

Nun wollt ichi fragen, ob r = 1, weil in der Aufgabe keine weitere Zahl, vor cos steht....würde eine Zahl vor cos stehen...beispielsweise  [mm] \wurzel[3]{4cos(135°) + 2isin(135°)} [/mm] wäre r = 4?

Zweite Frage: der Winkel [mm] \alpha [/mm] kann ich da die 135° nehmen, oder muss ich den von dem etwas abziehen...um den für die formel benötigten winkel (bzw. in pi umgerechnet) zu erhalten.

Hoffe, die fragen sind nciht allzu blöd gestellt...

MFG

        
Bezug
komplexe Zahlen: Link
Status: (Antwort) fertig Status 
Datum: 12:49 Mo 12.02.2007
Autor: Roadrunner

Hallo Idale!


[guckstduhier]  .  .  .  []Rechnen mit komplexen Zahlen


> für die lösung benötigt man ja die Formel [mm]W_k = \wurzel[n]{r} (cos \bruch{\alpha +2k\pi}{n} + i sin \bruch{\alpha +2k\pi}{n})[/mm]

[ok]

  

> Nun wollt ichi fragen, ob r = 1, weil in der Aufgabe keine
> weitere Zahl, vor cos steht....

[ok]


> würde eine Zahl vor cos stehen...beispielsweise  [mm]\wurzel[3]{4cos(135°) + 2isin(135°)}[/mm]
> wäre r = 4?

Naja, diese genannte Zahl von Dir gibt es nicht, da hier vor dem [mm] $\cos$ [/mm] und [mm] $\sin$ [/mm] unterschiedliche Zahlen stehen.

Aber ich denke, Du meinst prinzipiell das Richtige.

  

> Zweite Frage: der Winkel [mm]\alpha[/mm] kann ich da die 135°
> nehmen, oder muss ich den von dem etwas abziehen...um den
> für die formel benötigten winkel (bzw. in pi umgerechnet)
> zu erhalten.

Du solltest $135°_$ in das Bogenmaß umrechnen (oder aber an Stelle von [mm] $k*2\pi$ [/mm] mit $k*360°_$ in die Formel gehen.

Abziehen musst Du hier im Vorfeld nichts ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]