matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskomplexe Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - komplexe Zahlen
komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Hilfe bei Lösung
Status: (Frage) beantwortet Status 
Datum: 14:38 Mi 16.11.2005
Autor: christl

Hallo,

wie schon in lin. Algebra hab ich jetzt auch noch das gleiche Problem in Differential und Integralrechnung.
Ich war die letzten 2 Wochen krank, so dass ich nicht die Vorlesungen besuchen konnte. Nun kommt ein Kumpel von mir nicht aus dem Knie, so dass ich die Aufzeichnungen auch noch nicht bekommen hab und ohne fällt es mir ziemlich schwer die Aufgaben zu lösen.

Bitte helft mir!!!

1)
Berechnen Sie die folgenden Ausdrücke mit komplexen Zahlen, d.h. geben Sie Ihre Darstellungen in der Form a + bi mit  a,b [mm] \in \IR [/mm] an:

(3 - [mm] 2i)^{3} [/mm] ,     (5/ (3 - 4i)) + (10/ (4 + 3i)) ,      ((1 - i) / (1 + i))^10 ,

[mm] \summe_{k=1}^{7} [/mm] ((1 - i) / ( [mm] \wurzel{2} ))^k [/mm] .


2)
Es seien [mm] z_{1} [/mm] , [mm] z_{2} \in \IC [/mm] beliebige komplexe Zahlen.
   a) Beweisen Sie: Aus l [mm] z_{1} [/mm] + [mm] z_{2} [/mm] l [mm] \le [/mm] 1 und l [mm] z_{1} [/mm] - [mm] z_{2} [/mm] l [mm] \le [/mm] 1 folgt l [mm] z_{1} l^2 [/mm] + l [mm] z_{2} l^2 \le [/mm] 1.
  
   b) Beweisen Sie: Aus [mm] lz_{1} l^2 [/mm] + [mm] lz_{2}l^2 \le [/mm] 1 folgt [mm] lz_{1} [/mm] + [mm] z_{2}l \le [/mm] 1 oder [mm] iz_{1} [/mm] - [mm] z_{2}i \le [/mm] 1

   c) Gilt auch die Umkehrung zu a)?


3)
Beweisen sSie die folgenden drei Behauptungen:
   a) Für z [mm] \in \IC [/mm] gilt lz + 1l > lz - 1l  ganu dann, wenn Re z > 0 ist.

   b) Für z [mm] \in \IC, [/mm] z [mm] \not= [/mm] 0 gilt Re (z + 1/z) = 0 ganu dann, wenn Re u = 0 ist.

   c) Für z [mm] \in \IC, [/mm] z [mm] \not= [/mm] 0 gilt Im (z + 1/z) = 0 genau dann, wenn Im z = 0 oder lzl = 1 ist.


4)  
Die filgenden drei Teilmengen [mm] G_{0} [/mm] , [mm] G_{+} [/mm] , [mm] G_{-} \subseteq \IC [/mm] veranschauliche man sich in der Gaußschen Zahlenebene, d.h. man überlege sich, welche geometrischen Objekte dadurch beschrieben werden. Dazu seien a,a [mm] \in \IC [/mm] , b [mm] \not= [/mm] 0 und
[mm] G_{0} [/mm] := {z [mm] \in \IC [/mm] l Im ((z - a)/b) = 0} ,  
[mm] G_{+} [/mm] := {z [mm] \in \IC [/mm] l Im ((z - a/b) > 0} ,
[mm] G_{-} [/mm] := {z [mm] \in \IC [/mm] l Im ((z - a/b) < 0 }.


So das wars. Danke schon im voraus.

Christl    

P.S.:  Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.        

        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 16.11.2005
Autor: Leopold_Gast

Du könntest dir mehr Mühe geben, die Angaben ordentlich hinzuschreiben. Man kann das nämlich teilweise nicht entziffern. Was soll zum Beispiel das Klein-L in Aufgabe 2? Ich habe da zwar die Vermutung, daß es sich um einen Betragsstrich handeln soll, weil es sonst total sinnlos wäre, aber so ganz sicher bin ich mir da nicht. Verwende für Betragsstriche das Zeichen | (Tastatur: AltGr + <).

Zu Aufgabe 1):

Du kannst mit komplexen Zahlen wie üblich rechnen. Du mußt nur die Regel [mm]\operatorname{i}^2 = -1[/mm] beachten. Bei Brüchen kriegst du das [mm]\operatorname{i}[/mm] aus dem Nenner weg, indem du so erweiterst, daß im Nenner die dritte binomische Formel entsteht.

Beispiele:

[mm](1 - 2 \operatorname{i}) (-3 + 5 \operatorname{i}) = -3 + 5 \operatorname{i} + 6 \operatorname{i} \underbrace{- 10 \operatorname{i}^2}_{= + 10} = 7 + 11 \operatorname{i}[/mm]

[mm]\frac{1 - \operatorname{i}}{2 + 3 \operatorname{i}} = \frac{(1 - \operatorname{i})(2 - 3 \operatorname{i})}{(2 + 3 \operatorname{i})(2 - 3 \operatorname{i})} = \ldots[/mm]

Bezug
        
Bezug
komplexe Zahlen: google
Status: (Antwort) fertig Status 
Datum: 01:30 Do 17.11.2005
Autor: leduart

Hallo
google wimmelt von Anleitungen zum rechnen mit komplexen Zahlen, such dir was aus und probiers. z. Bsp gib in googl ein  rechnen mit komplexen Zahlen.
Es ist wirklich sinnlos wenn wir das alles noch mal aufschreiben!
Wenn du dann noch fragen hast gibt dir sicher gern jemand Antwort, aber nen Anfang musst du selber machen
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]