matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrakomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - komplexe Zahlen
komplexe Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 07.11.2005
Autor: Franzie

Hallo ihr Lieben!

brauche ein paar tipps zur lösung folgender aufgabe:
ich soll die reellen zahlen c und in abhängigkeit von a und b aus der gleichung (a+bi)*(c+di)=1 bestimmen.
ich weiß, dass zwei komplexe zahlen genau dann gleich sind, wenn realteile und imaginärteile übereinstimmen (warum ist das eigentlich so?)
weiterhin hab ich die zahlen schon so umgeformt:

(a+bi)*(c+di)= [mm] (\vektor{a \\ 0}+ \vektor{b \\ 0}* \vektor{0\\ 1})*( \vektor{c \\ 0}+ \vektor{d \\ 0}* \vektor{0\\ 1})=1 [/mm]
und weiter
= [mm] \vektor{a \\ b}* \vektor{c \\ d}=1 [/mm] und wenn ich das jetzt berechnen will
[mm] \vektor{ac-bd \\ ad+bc}=1 [/mm]
aber wie mach ich da jetzt weiter, um auf ein ergebnis zu kommen?

liebe grüße und danke schon mal

        
Bezug
komplexe Zahlen: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:57 Mo 07.11.2005
Autor: MathePower

Hallo Franzie,

> Hallo ihr Lieben!
>  
> brauche ein paar tipps zur lösung folgender aufgabe:
>  ich soll die reellen zahlen c und in abhängigkeit von a
> und b aus der gleichung (a+bi)*(c+di)=1 bestimmen.
>  ich weiß, dass zwei komplexe zahlen genau dann gleich
> sind, wenn realteile und imaginärteile übereinstimmen
> (warum ist das eigentlich so?)
>  weiterhin hab ich die zahlen schon so umgeformt:
>  
> (a+bi)*(c+di)= [mm](\vektor{a \\ 0}+ \vektor{b \\ 0}* \vektor{0\\ 1})*( \vektor{c \\ 0}+ \vektor{d \\ 0}* \vektor{0\\ 1})=1[/mm]
>  
> und weiter
> = [mm]\vektor{a \\ b}* \vektor{c \\ d}=1[/mm] und wenn ich das jetzt
> berechnen will
>   [mm]\vektor{ac-bd \\ ad+bc}=1[/mm]
>  aber wie mach ich da jetzt
> weiter, um auf ein ergebnis zu kommen?

Schreibst Du obige Gleichung aus, und setzt die mit der 1 gleich, dann erkennst Du, daß der Imaginärteil verschwinden muß.

Korrekterweise lautet die Gleichung dann so:

   [mm]\vektor{ac-bd \\ ad+bc}\;=\;\vektor{1 \\ 0}[/mm]

Und das fasst man das als ein Lineares Gleichungssystem für c und d auf.

Gruß
MathePower

Bezug
        
Bezug
komplexe Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:44 Mo 07.11.2005
Autor: Franzie

wo wir doch gerade über komplexe zahlen reden, hab ich da noch eine frage. wie kann ich eigentlich zu einer gegebenen komplexen zahl das multiplikativ inverse element berechnen, z.b. bei 5+2i? einfach mit -1 multiplizieren oder wie funktioniert das?

Bezug
                
Bezug
komplexe Zahlen: Schon fertig,..
Status: (Antwort) fertig Status 
Datum: 07:29 Di 08.11.2005
Autor: statler

Guten Morgen Franziska!

...jedenfalls, wenn du den ersten Teil bis zum Ende durchgezogen hast.

(a + bi)*(c + di) = 1 heißt doch gerade, daß (c + di) das multiplikative Inverse zu (a + bi) ist. Wenn du deine Gleichungen im 1. Teil in allgemeiner Form gelöst hast, brauchst du jetzt nur noch a = 5 und b = 2 zu nehmen.

Alles klar?

Gruß aus HH-Harburg
Dieter


Bezug
                        
Bezug
komplexe Zahlen: Rückfrage mit Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 08.11.2005
Autor: Franzie

also ich hab die gleichung (a+bi)*(c+di)=1 jetzt aufgelöst und jeweils c und d durch a und b ausgedrückt un erhalte als ergebnis für

c=a/( [mm] a^{2}+ b^{2}) [/mm] und für

d=-b/( [mm] a^{2}+ b^{2}) [/mm] . das müsste doch eigentlich okay sein. mit dieser gleichung kann ich ja nun theoretisch die multiplikativen inversen zu folgenden zahlen bestimmen:

(5+2i):            (5-2i)/29
(7-i):               (7-i)/50
(1+2i):            (1-2i)/5

hab ich das jetzt richtig gemacht?
lieben gruß

Bezug
                                
Bezug
komplexe Zahlen: Schreibfehler
Status: (Antwort) fertig Status 
Datum: 19:35 Di 08.11.2005
Autor: MathePower

Hallo Franzie,

> also ich hab die gleichung (a+bi)*(c+di)=1 jetzt aufgelöst
> und jeweils c und d durch a und b ausgedrückt un erhalte
> als ergebnis für
>  
> c=a/( [mm]a^{2}+ b^{2})[/mm] und für
>  
> d=-b/( [mm]a^{2}+ b^{2})[/mm] . das müsste doch eigentlich okay
> sein. mit dieser gleichung kann ich ja nun theoretisch die
> multiplikativen inversen zu folgenden zahlen bestimmen:

[ok]

>  
> (5+2i):            (5-2i)/29
>  (7-i):               (7-i)/50

Das muss heißen:
(7-i):               (7+i)/50

>  (1+2i):            (1-2i)/5
>  
> hab ich das jetzt richtig gemacht?

Ja, bis auf den kleinen Schreibfehler.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]