matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkomplexe Fourierreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - komplexe Fourierreihe
komplexe Fourierreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:55 Mo 08.11.2010
Autor: stevarino


Hallo

Bräuchte etwas Hilfe bei der Bestimmung der Koeffizienten.
Gegeben ist eine Rechteckfunktion die 2[mm]\pi[/mm]periodisch ist. mit einer Amplitude von F
0 < t< [mm]\pi[/mm]   F
[mm]\pi[/mm]< t< 2[mm]\pi[/mm]  -F
[mm]\Omega_{k}=k*\Omega[/mm]
Die Koeffizienten bestimme ich mit [mm]F_{k}=\bruch{1}{p}\integral_{-\bruch{p}{2}}^{\bruch{p}{2}}{f(t)*e^{-i*\Omega_{k}*t}dt}[/mm]
leider komme ich mit der Ausführung nicht ganz klar [verwirrt]

z.B.: Koeffizient k=1 wäre doch das hier...
[mm]F_{1}=\bruch{1}{2\pi}[\integral_{0}^{\pi}{F*e^{-i*\Omega*t}dt}-\integral_{\pi}^{2\pi}{F*e^{-i*\Omega*t}dt}][/mm]
[mm]F_{1}=\bruch{1}{2\pi}[-F*\frac{1}{i*\Omega}*e^{-i*\Omega*t}|^\pi_0+F*\frac{1}{i*\Omega}*e^{-i*\Omega*t}|^2\pi_\pi] [/mm]
herausheben

[mm]F_{1}=\bruch{F}{2\pi*\Omega}*i[e^{-i*\Omega*t}|^\pi_0-e^{-i*\Omega*t}|^2\pi_\pi] [/mm]

wie kommt man so auf die Formel aus dem Tabellenbuch

[mm]F_{t}=\bruch{\red{2}*F}{\pi}*i*[\bruch{1}{5}e^{-5i\Omega}+\bruch{1}{3}e^{-3i\Omega}+e^{-i\Omega}-e^{i\Omega}-\bruch{1}{3}e^{3i\Omega}-\bruch{1}{5}e^{5i\Omega}] [/mm]
auch wenn ich umbestimmt integrier komme ich auch nicht drauf

lg stevo
[mm][/mm]



        
Bezug
komplexe Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Mo 08.11.2010
Autor: rainerS

Hallo stevo!

>
> Hallo
>  
> Bräuchte etwas Hilfe bei der Bestimmung der
> Koeffizienten.
>  Gegeben ist eine Rechteckfunktion die 2[mm]\pi[/mm]periodisch ist.
> mit einer Amplitude von F
>  0 < t< [mm]\pi[/mm]   F
>  [mm]\pi[/mm]< t< 2[mm]\pi[/mm]  -F
>  [mm]\Omega_{k}=k*\Omega[/mm]
>  Die Koeffizienten bestimme ich mit
> [mm]F_{k}=\bruch{1}{p}\integral_{-\bruch{p}{2}}^{\bruch{p}{2}}{f(t)*e^{-i*\Omega_{k}*t}dt}[/mm]
>  leider komme ich mit der Ausführung nicht ganz klar
> [verwirrt]
>  
> z.B.: Koeffizient k=1 wäre doch das hier...
>  
> [mm]F_{1}=\bruch{1}{2\pi}[\integral_{0}^{\pi}{F*e^{-i*\Omega*t}dt}-\integral_{\pi}^{2\pi}{F*e^{-i*\Omega*t}dt}][/mm]

>

> [mm]F_{1}=\bruch{1}{2\pi}[-F*\frac{1}{i*\Omega}*e^{-i*\Omega*t}|^\pi_0+F*\frac{1}{i*\Omega}*e^{-i*\Omega*t}|^2\pi_\pi] [/mm]
>  herausheben
>  
> [mm]F_{1}=\bruch{F}{2\pi*\Omega}*i[e^{-i*\Omega*t}|^\pi_0-e^{-i*\Omega*t}|^{2\pi}_\pi] [/mm]

In deiner Normierung [mm] $T=2\pi$ [/mm] ist ja [mm] $\Omega=1$, [/mm] daher:

[mm] F_1 = \bruch{F}{2\pi*\Omega}* i \left[ (-1-1) - (1+1) \right] = -\bruch{2iF}{\pi} [/mm] .

>
> wie kommt man so auf die Formel aus dem Tabellenbuch
>  
> [mm]F_{t}=\bruch{\red{2}*F}{\pi}*i*[\bruch{1}{5}e^{-5i\Omega}+\bruch{1}{3}e^{-3i\Omega}+e^{-i\Omega}-e^{i\Omega}-\bruch{1}{3}e^{3i\Omega}-\bruch{1}{5}e^{5i\Omega}][/mm]

Stimmt überein. [mm] $F_1$ [/mm] ist der Vorfaktor zu [mm] $e^{i\Omega}$ [/mm] .

Viele Grüße
   Rainer

Bezug
                
Bezug
komplexe Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:32 Mo 08.11.2010
Autor: stevarino

Danke für die rasche Hilfe

lg Stevo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]