matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplex differenzierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - komplex differenzierbar
komplex differenzierbar < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplex differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Di 09.06.2009
Autor: takeiteasy

Aufgabe
1. Es sei [mm] U\subset\IC [/mm] offen und [mm] d:U\to\IC [/mm] sei eine Abbildung. f heißt komplex diffbar im Punkt [mm] z_{0}\inU [/mm] falls der Grenzwert
     [mm] \limes_{{h\rightarrow\0},{h\in\IC}} \bruch{f(z_{0} +h)-f(z_{0})}{h} [/mm]
existiert.
Zeigen Sie: f ist genau dann komplex differenzierbar, wenn es eine komplex lineare Abbildung [mm] l:\IC\to\IC [/mm] gibt, so dass
     [mm] \limes_{{h\rightarrow\0},{h\in\IC}} \bruch{f(z_{0} +h)-f(z_{0})-l(h)}{h}=0 [/mm]   ist.

2. Es sei [mm] U\subset\IC [/mm] offen und [mm] f:U\to\IC [/mm] sei eine Funktion. Wir betrachten die Funktion    [mm] g(x)=\vektor{Re f(x_{1}+ix_{2}) \\ Im f(x_{1}+ix_{2})}. [/mm]

a) Bestimmen Sie die der Funktion [mm] f(z)=\overline{z} [/mm] zugeordnete Funktion g.

b) Zeigen Sie: Ist f als Funktion [mm] \IC\to\IC [/mm] diffbar, dann ist auch g als Funktion [mm] \IR^{2}\to\IR^{2} [/mm] diffbar.

c) Gilt auch die Umkehrung? Belegen Sie ihre Antwort!

Hallo zusammen!

Ich bearbeite gerade diese Aufgabe und komme nicht ganz weiter.
Bei 1. habe ich Probleme mit dem l(h). Ist das die Ableitung von f?
Bei 2. verstehe ich nicht ganz was gemeint ist. Soll ich g(x) komplex konjugiert betrachten?

Ich freue mich über jede Hilfe.

PS. Unter dem limes soll beide Male h gegen 0 stehen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplex differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 09.06.2009
Autor: fred97


> 1. Es sei [mm]U\subset\IC[/mm] offen und [mm]d:U\to\IC[/mm] sei eine
> Abbildung. f heißt komplex diffbar im Punkt [mm]z_{0}\inU[/mm] falls
> der Grenzwert
> [mm]\limes_{{h\rightarrow\0},{h\in\IC}} \bruch{f(z_{0} +h)-f(z_{0})}{h}[/mm]
>  
> existiert.
> Zeigen Sie: f ist genau dann komplex differenzierbar, wenn
> es eine komplex lineare Abbildung [mm]l:\IC\to\IC[/mm] gibt, so
> dass
>       [mm]\limes_{{h\rightarrow\0},{h\in\IC}} \bruch{f(z_{0} +h)-f(z_{0})-l(h)}{h}=0[/mm]
>   ist.
>  
> 2. Es sei [mm]U\subset\IC[/mm] offen und [mm]f:U\to\IC[/mm] sei eine
> Funktion. Wir betrachten die Funktion    [mm]g(x)=\vektor{Re f(x_{1}+ix_{2}) \\ Im f(x_{1}+ix_{2})}.[/mm]
>  
> a) Bestimmen Sie die der Funktion [mm]f(z)=\overline{z}[/mm]
> zugeordnete Funktion g.
>  
> b) Zeigen Sie: Ist f als Funktion [mm]\IC\to\IC[/mm] diffbar, dann
> ist auch g als Funktion [mm]\IR^{2}\to\IR^{2}[/mm] diffbar.
>  
> c) Gilt auch die Umkehrung? Belegen Sie ihre Antwort!
>
> Hallo zusammen!
>  
> Ich bearbeite gerade diese Aufgabe und komme nicht ganz
> weiter.
> Bei 1. habe ich Probleme mit dem l(h). Ist das die
> Ableitung von f?

Ist f in [mm] z_0 [/mm] komplex differenzierbar, so ist

          $l(h) = [mm] f'(z_0)*h$ [/mm]





>  Bei 2. verstehe ich nicht ganz was gemeint ist. Soll ich
> g(x) komplex konjugiert betrachten?

Mit [mm] $z=x_1+ix_2$ [/mm] ist $f(z) = [mm] x_1-ix_2$ [/mm] und somit (mit $x = [mm] (x_1,x_2))$: [/mm]

$g(x) = [mm] \vektor{x_1 \\ -x_2}$ [/mm]

FRED


>  
> Ich freue mich über jede Hilfe.
>  
> PS. Unter dem limes soll beide Male h gegen 0 stehen.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
komplex differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Di 09.06.2009
Autor: takeiteasy

Bei 1. habe ich Probleme mit dem l(h). Ist das die
> > Ableitung von f?
>  
> Ist f in [mm]z_0[/mm] komplex differenzierbar, so ist
>  
> [mm]l(h) = f'(z_0)*h[/mm]

Vielen Dank für die schnelle Antwort.
Mit deinen Tipps kann ich auch gut weiterarbeiten. Ich verstehe nur nicht, wie du auf
          [mm] l(h)=f'(z_{0})\*h [/mm]
gekommen bist.
Kannst du mir das wohl noch erklären?

Danke

Bezug
                        
Bezug
komplex differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 06:55 Mi 10.06.2009
Autor: fred97

Ist f in [mm] z_0 [/mm] komplex diffbar, so gilt doch:


              [mm] \bruch{f(z_0+h)-f(z_0)}{h} \to f'(z_0) [/mm]     für   z [mm] \to z_0. [/mm]

Das ist aber gleichbedeutend mit

              [mm] \bruch{f(z_0+h)-f(z_0)-f'(z_0)*h}{h} \to [/mm] 0     für  z [mm] \to z_0. [/mm]


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]