matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenkomplanare Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - komplanare Vektoren
komplanare Vektoren < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplanare Vektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 12.05.2006
Autor: transparent

Aufgabe
Sind die folgenden Vektoren komplanar?

a= 3/3/-1, b= 2/-4/6, c= 14/-1/12

Hallo,
bin mir nicht sicher, wie ich diese Aufgabe lösen muss... Haben im Unterricht etwas von Vektoren aneinanderschieben besprochen, aber ich weiß nicht, wie ich das machen soll, noch, wie ich dann auf die Komplanaritätsbedingung komme.
ich wäre euch sehr dankbar, wenn ihr mir helfen könntet.
lieber gruß, transparent


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
komplanare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 12.05.2006
Autor: Herby

Hallo transparent,

ich gehe mal davon aus, dass ihr das in Form eines Gleichungssystems lösen sollt.

Dazu ist:  [mm] \vec{a}=k*\vec{b}+m*\vec{c} [/mm] zu prüfen.


Setze deine Koordinaten ein und du erhältst ein Gleichnungssystem mit drei Gleichungen und zwei Unbekannten.

Ist es lösbar, so sind die Vektoren komplanar :-)



Liebe Grüße
Herby

Bezug
        
Bezug
komplanare Vektoren: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Fr 12.05.2006
Autor: Herby

Oh...


hatte vergessen die Begründung zu liefern ;-)


Komplanare Vektoren sind linear abhängig, d.h. lassen sich als Linearkombination anderer Vektoren darstellen.



lg
Herby

Bezug
        
Bezug
komplanare Vektoren: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:11 Fr 12.05.2006
Autor: transparent

und was sind k und m, vielmehr, wie komme ich auf die beiden und was hat meine Rechnung dann mit Ebenen zu tun?
Wir haben vorher entwickelt, wie man überprüft, ob 2 Ebenen gleich sind. Das gehört jetzt aber nicht zu dieser Aufgabe, oder doch? Fehlt dann nicht eine Ebenengleichung oder muss ich mir die entwickeln oder hat diese Aufgabe nichts mit Ebenen zu tun?

Bezug
                
Bezug
komplanare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Fr 12.05.2006
Autor: Herby

Hi,


k und m sind unbekannte Größen, die du durch das Gleichungssystem herausbekommst.


[mm] \vektor{ a_1 \\ a_2 \\ a_3 }=\red{\vektor{ 0 \\ 0\\ 0 }}+k*\vektor{ b_1 \\ b_2 \\ b_3 }+m*\vektor{ c_1 \\ c_2 \\ c_3 } [/mm]


[mm] a_1=k*b_1+m*c_1 [/mm]

[mm] a_2=k*b_2+m*c_2 [/mm]

[mm] a_3=k*b_3+m*c_3 [/mm]


Dieses Gleichungssystem kannst du entweder durch das Gleichsetzungs-, Additions- oder Einsetzverfahren lösen.


Eine Ebenengleichung benötigst du hierfür (fast) nicht ;-)


Liebe Grüße
Herby

Bezug
                
Bezug
komplanare Vektoren: Zusatz 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Fr 12.05.2006
Autor: Herby



.. deine Vektoren sind übrigens linear abhängig



lg
Herby

Bezug
                
Bezug
komplanare Vektoren: bessere Erklärung
Status: (Antwort) fertig Status 
Datum: 13:42 Fr 12.05.2006
Autor: Herby

Hallo nochmal,


naja, im Grunde hast du ja eine Ebenengleichung, mit Aufpunkt (0 | 0 | 0) und den Richtungsvektoren zu den Punkten B und C.
Jetzt prüfst du ob A in der Ebene liegt.

war das besser :-)



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]