matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenkommutatives Diagramm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - kommutatives Diagramm
kommutatives Diagramm < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kommutatives Diagramm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 06.11.2008
Autor: Kocram

Aufgabe
Seien A, B, X, Y Mengen und es gelte [mm] f\circ\alpha [/mm] = [mm] \beta\circ [/mm] g (da es sich um ein kommutatives Diagramm handelt). Ferner seien [mm] \alpha [/mm] und [mm] \beta [/mm] bijektiv. Man zeige: Genau dann ist g injektiv, wenn f injektiv ist.

Hi,

da laut Voraussetzung ja [mm] \alpha [/mm] und [mm] \beta [/mm] bijektiv sind existiert es ein [mm] \alpha^-^1 [/mm] und ein [mm] \beta^-^1. [/mm] Daraus folgt, dass [mm] f=\beta\circ g\circ \alpha^-^1 [/mm] und [mm] g=\beta^-^1\circ f\circ\alpha. [/mm]

Behauptung: g injektiv [mm] \gdw [/mm] f injektiv

Beweis:
[mm] "\Rightarrow": [/mm] Sei g injektiv, d.h. gelte für zwei beliebige Elemente [mm] a_{1},a_{2}\in [/mm] A: [mm] g_{a_{1}} [/mm] = [mm] g_{a_{2}} \Rightarrow a_{1}=a_{2}. [/mm]
zu zeigen: [mm] \exists x_{1},x_{2}\in [/mm] X für das gilt:  [mm] f_{x_{1}} [/mm] = [mm] f_{x_{2}} \Rightarrow x_{1} [/mm] = [mm] x_{2} [/mm]

Nun würde ich in [mm] g_{a_{1}} [/mm] = [mm] g_{a_{2}} \Rightarrow a_{1}=a_{2} [/mm] g durch [mm] \beta^-^1\circ f\circ\alpha [/mm] ersetzen und käme so auf: [mm] \beta^-^1\circ f\circ\alpha_{a_{1}} [/mm] = [mm] \beta^-^1\circ f\circ\alpha_{a_{2}} \Rightarrow a_{1}=a_{2}. [/mm]
Und genau hier weiss ich auch nicht mehr weiter.

Kann ich evtl. [mm] a_{1} [/mm] = [mm] a_{2} [/mm] durch [mm] f_{x_{1}} [/mm] = [mm] f_{x_{2}} [/mm] ersetzen?
Wobei ich auch nicht wirklich weiss, was mir das bringen sollte.


        
Bezug
kommutatives Diagramm: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 Fr 07.11.2008
Autor: angela.h.b.


> Seien A, B, X, Y Mengen und es gelte [mm]f\circ\alpha[/mm] =
> [mm]\beta\circ[/mm] g (da es sich um ein kommutatives Diagramm
> handelt). Ferner seien [mm]\alpha[/mm] und [mm]\beta[/mm] bijektiv. Man
> zeige: Genau dann ist g injektiv, wenn f injektiv ist.

Hallo,

Du hast in Deiner Aufgabenstellung etwas ganz Wesentliches vergessen mitzuteilen: welche Abbildung bildet eigentlich in welche Menge ab?

Das sollte man schon wissen.

Ich mach's jetzt mal so

[mm] \alpha: A\to [/mm] B
[mm] \beta: X\to [/mm] Y
g: [mm] A\to [/mm] X
f: [mm] B\to [/mm] Y


> Behauptung: g injektiv [mm]\gdw[/mm] f injektiv

en [mm] b_1, b_2 \in [/mm] B mit

[mm] f(b_1)=f(b_2) [/mm]

Da .... , gibt es [mm] a_1 [/mm] und [mm] a_2 \in [/mm] A  mit  [mm] \alpha(a_i)=b_i. [/mm]

Also folgt

[mm] f(\alpha(a_1))=f(\alpha(a_2)), [/mm]

und jetzt weiter unter Ausnutzung dessen, was bekannt ist (Verkettungen, Injektivität von [mm] \alpha, \beta, [/mm] g, Surj. von [mm] \alpha, \beta). [/mm]

Gruß v. Angela






>  
> Beweis:
>  [mm]"\Rightarrow":[/mm] Sei g injektiv, d.h. gelte für zwei
> beliebige Elemente [mm]a_{1},a_{2}\in[/mm] A: [mm]g_{a_{1}}[/mm] = [mm]g_{a_{2}} \Rightarrow a_{1}=a_{2}.[/mm]
>  
> zu zeigen: [mm]\exists x_{1},x_{2}\in[/mm] X für das gilt:  
> [mm]f_{x_{1}}[/mm] = [mm]f_{x_{2}} \Rightarrow x_{1}[/mm] = [mm]x_{2}[/mm]
>
> Nun würde ich in [mm]g_{a_{1}}[/mm] = [mm]g_{a_{2}} \Rightarrow a_{1}=a_{2}[/mm]
> g durch [mm]\beta^-^1\circ f\circ\alpha[/mm] ersetzen und käme so
> auf: [mm]\beta^-^1\circ f\circ\alpha_{a_{1}}[/mm] = [mm]\beta^-^1\circ f\circ\alpha_{a_{2}} \Rightarrow a_{1}=a_{2}.[/mm]
>  
> Und genau hier weiss ich auch nicht mehr weiter.
>  
> Kann ich evtl. [mm]a_{1}[/mm] = [mm]a_{2}[/mm] durch [mm]f_{x_{1}}[/mm] = [mm]f_{x_{2}}[/mm]
> ersetzen?
>  Wobei ich auch nicht wirklich weiss, was mir das bringen
> sollte.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]