matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikkombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - kombinatorik
kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 22.08.2005
Autor: magister

wieviele dreistellige zahlen können aus den ziffern 6,7,8,9 und 0 gebildet werden, wenn

a) wiederholungen der ziffern erlaubt sind
b) wiederholungen der ziffern nicht erlaubt sind und
c) wieviele der derart gebildeten zahlen in a) bzw. in b) sind ungerade ??

Ansatz
a) ziehen mit zurücklegen, reihenfolge wichtig....also variation
5  ^ 3

b)variation ohne zurücklegen
5! / ( (5-3)! * 3!  )

c) keine ahnung

Bitte Bestätigung bzw. Hilfe

Danke im voraus


        
Bezug
kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Di 23.08.2005
Autor: djmatey

Hallo,
also Teil a) stimmt so, das sind  [mm] 5^{3} [/mm] = 125 Möglichkeiten.
Zu b):
Nach Deiner Methode wären das nur  [mm] \vektor{5 \\ 3} [/mm] = 10 Möglichkeiten.
Man kann sich leicht (z.B. durch einfaches Probieren) überlegen, dass das mehr sein müssen.
Für die erste Stelle gibt es 5 Mögl., für die zweite dann nur noch 4, für die dritte 3, d.h. insgesamt 5*4*3 = 60 Möglichkeiten.
Zu c)
Die dreistellige Zahl ist genau dann ungerade, falls an der letzten Stelle eine 7 oder eine 9 steht.
Für die Kombinationen mit Wiederholung aus a) gilt dann, dass es 5*5 = 25 Möglichkeiten gibt, wenn hinten eine 7 steht, und ebenso viele, falls hinten eine 9 steht, d.h. insgesamt 50 Möglichkeiten.
Für die Kombinationen ohne Wiederholung aus Teil b) gilt:
Steht hinten eine 7, gibt es für die ersten beiden Stellen noch 4*3 = 12 Möglichkeiten, denn die 7 ist ja schon "verbraucht". Steht hinten eine 9, gilt dasselbe, d.h. es gibt insgeamt 24 Möglichkeiten.
Beste Grüße,
djmatey

Bezug
                
Bezug
kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Di 23.08.2005
Autor: magister

dankesehr

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]