matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenkoeffizientenvektor-darstellun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - koeffizientenvektor-darstellun
koeffizientenvektor-darstellun < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

koeffizientenvektor-darstellun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 15.02.2010
Autor: dom88

die spalten einer darstellungsmatrix besteht ja aus den koeffizientenvektoren des bildes der urbildbasisvektoren bezüglich der basis des bildraumes.

ist denn dann noch garantiert, dass alle koeffizientenvektoren linear unabhängig voneinander sind?
könnte doch sein, dass das bild der basisvektoren nicht mehr linear unabhängig sind, oder?

rechne nämlich gerade eine aufgabe bei der eine darstellungsmatrix gegeben ist und man eine basis des bildes angeben soll.
die antwort lautet, man nehme einfach rang (A)-viele linear unabhängige spaltenvekotren. die bilden dann die basis.ich dachte die spaltenvektoren  sind die koeffizientenvektoren der linearkombi des bildes bezügl. der basis des bildraumes.

liegt das daran, weil man mehrere basen bilden kann? und diese auch eine sein könnte? dann könnte man doch aber auch einfach die kanonische einheitsbasis wählen?

danke im vorraus

dom

        
Bezug
koeffizientenvektor-darstellun: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 15.02.2010
Autor: leduart

Hallo
Das ist doch ne lineare Abbildung! was bedeutet das für
[mm] \alpha*f(a)+\beta*f(b)? [/mm]
Gruss leduart

Bezug
                
Bezug
koeffizientenvektor-darstellun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Mo 15.02.2010
Autor: dom88

ja klar linearität. aber warum müssen dann die koeffizientenvektoren des bildes linear unabhängig voneinander sein?
und wie ist das dann mit der fragestellung. warum kann man einfach die spaltenvektoren nehmen?

Bezug
                        
Bezug
koeffizientenvektor-darstellun: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Mo 15.02.2010
Autor: fred97


> ja klar linearität. aber warum müssen dann die
> koeffizientenvektoren des bildes linear unabhängig
> voneinander sein?

Wer hat das behauptet ?

FRED


> und wie ist das dann mit der fragestellung. warum kann man
> einfach die spaltenvektoren nehmen?


Bezug
        
Bezug
koeffizientenvektor-darstellun: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mo 15.02.2010
Autor: tobit09

Hallo dom,

> die spalten einer darstellungsmatrix besteht ja aus den
> koeffizientenvektoren des bildes der urbildbasisvektoren
> bezüglich der basis des bildraumes.

Ja.

> ist denn dann noch garantiert, dass alle
> koeffizientenvektoren linear unabhängig voneinander sind?
>  könnte doch sein, dass das bild der basisvektoren nicht
> mehr linear unabhängig sind, oder?

In der Tat gibt es i.A. keinen Grund, warum hier lineare Unabhängigkeiten vorliegen sollten.
  

> rechne nämlich gerade eine aufgabe bei der eine
> darstellungsmatrix gegeben ist und man eine basis des
> bildes angeben soll.
> die antwort lautet, man nehme einfach rang (A)-viele linear
> unabhängige spaltenvekotren. die bilden dann die basis.ich
> dachte die spaltenvektoren  sind die koeffizientenvektoren
> der linearkombi des bildes bezügl. der basis des
> bildraumes.

(Eine Basis, nicht die Basis!) Nun kenne ich die konkrete Aufgabe nicht, weiß also nicht, wie der Bildraum aussieht. Daher weiß ich nicht, ob die Spaltenvektoren schon Vektoren des Bildraumes sind. Ansonsten müsste man die durch diese Koordinaten beschriebenen Vektoren des Bildraumes anstelle der Spaltenvektoren nehmen.

> liegt das daran, weil man mehrere basen bilden kann? und
> diese auch eine sein könnte? dann könnte man doch aber
> auch einfach die kanonische einheitsbasis wählen?

??? Warum sollte die Einheitsbasis Basis des Bildes sein?

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]