matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigeskniffliges zahlenrätsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - kniffliges zahlenrätsel
kniffliges zahlenrätsel < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kniffliges zahlenrätsel: "wichtige frage"
Status: (Frage) beantwortet Status 
Datum: 17:38 Mo 22.11.2004
Autor: jeanny

Hi Ihr lieben, ich hoffe ihr könnt mir helfen, habe folgende
Aufgabe zum lösen erhalten und bin seid 2 Tagen absolut
ratlos! Wenn Ihr es rausbekommt, wäre das super. Schon mal ein
Dankeschön vorab Gruß Jeanny

Addiere 5 ungerade Zahlen, und komme auf das ergebnis 32.
Du darfst auch mehrfach eine gleiche Zahl verwenden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kniffliges zahlenrätsel: Existiert Lösung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Mo 22.11.2004
Autor: Loddar

Hallo Jeanny,

[willkommenmr] !!

Kurze Rückfrage:
Bist Du sicher, ob überhaupt eine Lösung existiert?

Ich habe mir das mal kurz angesehen und würde doch glatt behaupten, daß für diese Aufgabe keine Lösung existiert.

Grüße Loddar

Bezug
        
Bezug
kniffliges zahlenrätsel: Ansatz
Status: (Antwort) fertig Status 
Datum: 18:04 Mo 22.11.2004
Autor: Loddar

Hallo Jeanny,

werde doch mal gleich meine Idee dazu hier äußern ;-) .

Jede ungerade Zahl läßt sich folgendermaßen darstellen:
[mm] $z_i [/mm] = [mm] 2*k_i [/mm] + 1$ mit [mm] $k_i \in \IN_0$ [/mm]

Das heißt meine gesuchte Zahlensumme lautet:
[mm] $z_1 [/mm] + [mm] z_2 [/mm] + [mm] z_3 [/mm] + [mm] z_4 [/mm] + [mm] z_5 [/mm] = 32$
[mm] $(2*k_1+1) [/mm] + [mm] (2*k_2+1) [/mm] + [mm] (2*k_3+1) [/mm] + [mm] (2*k_4+1) [/mm] + [mm] (2*k_5+1) [/mm] = 32$
[mm] $2*(k_1 [/mm] + [mm] k_2 [/mm] + [mm] k_3 [/mm] + [mm] k_4 [/mm] + [mm] k_5) [/mm] + 5*1 = 32$
[mm] $2*(k_1 [/mm] + [mm] k_2 [/mm] + [mm] k_3 [/mm] + [mm] k_4 [/mm] + [mm] k_5) [/mm]           = 27$
[mm] $k_1 [/mm] + [mm] k_2 [/mm] + [mm] k_3 [/mm] + [mm] k_4 [/mm] + [mm] k_5 [/mm]           = 13,5$

Da alle Werte [mm] $k_i$ [/mm] natürliche Zahlen sind (s.o.), kann in der Summe von natürlichen Zahlen keine nicht natürliche Zahl von 13,5 erreicht werden

[mm] \Rightarrow [/mm] es gibt keine Lösung für dieses Zahlenrätsel !!


An alle anderen MR-User: Gegenvorschläge ??
Ich lasse mich hier gerne eines besseren belehren ;-)

Grüße Loddar

Bezug
                
Bezug
kniffliges zahlenrätsel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Do 30.03.2006
Autor: moby

wenn man negative ungerade Zahlen berücksichtigt, dann kommt man wohl schnell auf eine Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]