matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und Approximationkleinste Fehlerquadrate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - kleinste Fehlerquadrate
kleinste Fehlerquadrate < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleinste Fehlerquadrate: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:09 Fr 16.03.2012
Autor: mike1988

Aufgabe
Man bestimme ein approximiertes Polynom ersten Grades  (im Sinne der kleinsten Fehlerquadrate) für folgende Punkte.

[mm] \vmat{ x_{i}& -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ y_{i} & 85 & 80 & 71 & 55 & 31 & 0 & -22} [/mm]

Hallo!

Teil A: So wie ich das verstehe, soll ich die gegebenen Punkte durch eine Funktion der Form: y(x)=a*x+b approxinieren!

Die Methode der kleinsten Fehlerquadrate habe ich auch so weit verstanden, nur stellt sich nun folgende Frage:

Um den Wert von a zu berechnen verwende ich diese Formel:

[mm] a=\bruch{(\summe_{i=1}^{m}x_{i}^2)*(\summe_{i=1}^{m}y_{i})-(\summe_{i=1}^{m}(x_{i} y_{i})*(\summe_{i=1}^{m}x_{i}) }{m*(\summe_{i=1}^{m}x_{i}^2)-(\summe_{i=1}^{m}x_{i})^2} [/mm]

Wenn ich nun die Summe über [mm] x_{i} [/mm] bilde, ergibt dies logischerweise 0 !

Dies würde ja bedeuten, dass der gesamte 2. Therm im Zähler sowie der 2. Therm im Nenner 0 werden!

Stimmt dies, bzw. gibt es eine andere Möglichkeit, dies zu lösen??
In der Vorlesung haben wir leider nur Werte von [mm] x_{i}, [/mm] i =1,2,....,m gehabt, und nie negative!!

Besten Dank für eure Hilfestellung!!

Mfg



        
Bezug
kleinste Fehlerquadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Fr 16.03.2012
Autor: Al-Chwarizmi


> Man bestimme ein approximiertes Polynom ersten Grades  (im
> Sinne der kleinsten Fehlerquadrate) für folgende Punkte.
>  
> [mm]\vmat{ x_{i}& -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ y_{i} & 85 & 80 & 71 & 55 & 31 & 0 & -22}[/mm]
>  
> Hallo!
>  
> Teil A: So wie ich das verstehe, soll ich die gegebenen
> Punkte durch eine Funktion der Form: y(x)=a*x+b
> approxinieren!
>  
> Die Methode der kleinsten Fehlerquadrate habe ich auch so
> weit verstanden, nur stellt sich nun folgende Frage:
>  
> Um den Wert von a zu berechnen verwende ich diese Formel:
>  
> [mm]a=\bruch{(\summe_{i=1}^{m}x_{i}^2)*(\summe_{i=1}^{m}y_{i})-(\summe_{i=1}^{m}(x_{i} y_{i})*(\summe_{i=1}^{m}x_{i}) }{m*(\summe_{i=1}^{m}x_{i}^2)-(\summe_{i=1}^{m}x_{i})^2}[/mm]
>  
> Wenn ich nun die Summe über [mm]x_{i}[/mm] bilde, ergibt dies
> logischerweise 0 !
>  
> Dies würde ja bedeuten, dass der gesamte 2. Therm im
> Zähler sowie der 2. Therm im Nenner 0 werden!
>  
> Stimmt dies, bzw. gibt es eine andere Möglichkeit, dies zu
> lösen??
>  In der Vorlesung haben wir leider nur Werte von [mm]x_{i},[/mm] i
> =1,2,....,m gehabt, und nie negative!!
>  
> Besten Dank für eure Hilfestellung!!
>  
> Mfg
>  


Hallo mike1988,

falls deine Formel stimmt, so freue dich doch einfach über
die rechnerische Vereinfachung, welche sich aus   [mm] $\summe_{i=1}^{m}x_{i}\ [/mm] =\ 0$
ergibt !
Das rechnerische Ergebnis lässt sich wohl recht leicht durch
eine Skizze wenigstens grob überprüfen.

LG   Al-Chw.


Bezug
                
Bezug
kleinste Fehlerquadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Fr 16.03.2012
Autor: mike1988

Hallo!

Formel sollte stimmen, habe ich aus dem Vorlesungs-Skript!

Die Vereinfachung wäre ja nett, leider bekomme ich als Ergebniss eine Funktion, welche meine Punkte nicht ansatzweise approximiert!

Hilfestellung??

DANKE!

Bezug
                        
Bezug
kleinste Fehlerquadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Fr 16.03.2012
Autor: MathePower

Hallo mike1988,

> Hallo!
>  
> Formel sollte stimmen, habe ich aus dem Vorlesungs-Skript!
>  
> Die Vereinfachung wäre ja nett, leider bekomme ich als
> Ergebniss eine Funktion, welche meine Punkte nicht
> ansatzweise approximiert!
>  


Die Formel, die Du angegeben hast, ist diejenige für den Achsenabschnitt.


> Hilfestellung??
>  
> DANKE!


Gruss
MathePower

Bezug
                                
Bezug
kleinste Fehlerquadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Fr 16.03.2012
Autor: mike1988

Hallo!

Achsenabschnitt??

Ich habe mir diese Formel zur bestimmung von a notiert, also zur bestimmung der Steigung der AUsgleichsgerade!

Für den Parameter b haben wir folgende Formel erhalten:

[mm] b=\bruch{m*(\summe_{i=1}^{m}x_{i}*y_{i})-(\summe_{i=1}^{m}x_{i})\cdot{}(\summe_{i=1}^{m}y_{i}) }{m\cdot{}(\summe_{i=1}^{m}x_{i}^2)-(\summe_{i=1}^{m}x_{i})^2} [/mm]

Leider verstehe ich noch immer nicht, wie ich mit den negativen Werten von x umgehen soll!

Bezug
                                        
Bezug
kleinste Fehlerquadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Fr 16.03.2012
Autor: MathePower

Hallo mike1988,

> Hallo!
>  
> Achsenabschnitt??
>  


Ja, falls die Gerade so lautet: y=ax+b.


> Ich habe mir diese Formel zur bestimmung von a notiert,
> also zur bestimmung der Steigung der AUsgleichsgerade!
>  
> Für den Parameter b haben wir folgende Formel erhalten:
>  
> [mm]b=\bruch{m*(\summe_{i=1}^{m}x_{i}*y_{i})-(\summe_{i=1}^{m}x_{i})\cdot{}(\summe_{i=1}^{m}y_{i}) }{m\cdot{}(\summe_{i=1}^{m}x_{i}^2)-(\summe_{i=1}^{m}x_{i})^2}[/mm]
>  


Dann lautet die Gerade, die ihr benutzt habt: y=b*x+a.


> Leider verstehe ich noch immer nicht, wie ich mit den
> negativen Werten von x umgehen soll!  


Gruss
MathePower

Bezug
                                                
Bezug
kleinste Fehlerquadrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Fr 16.03.2012
Autor: mike1988

Danke!

Genau! Die Gerade, welche wir benutz haben lautet: y=a+b*x !

Das heißt ja, dass zumindest diese Formeln stimmen! Oder??

Ist dan meine Interpretation auch richtig, dass die Therme [mm] \summe_{i=1}^{n}(x_{1}) [/mm] =0 sind???

Dann hätte cih ja bereits eine Lösung!

Besten Dank!

Bezug
                                                        
Bezug
kleinste Fehlerquadrate: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Fr 16.03.2012
Autor: MathePower

Hallo mike1988,

> Danke!
>  
> Genau! Die Gerade, welche wir benutz haben lautet: y=a+b*x
> !
>  
> Das heißt ja, dass zumindest diese Formeln stimmen!
> Oder??

>


Ja, die Formeln stimmen.


> Ist dan meine Interpretation auch richtig, dass die Therme
> [mm]\summe_{i=1}^{n}(x_{1})[/mm] =0 sind???

>


Ja, [mm]\summe_{i=1}^{n}(x_{\blue{i}}) =0 [/mm]


> Dann hätte cih ja bereits eine Lösung!
>  
> Besten Dank!



Gruss
MathePower

Bezug
                                                                
Bezug
kleinste Fehlerquadrate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Fr 16.03.2012
Autor: mike1988

Besten Dank für die Hilfestellung!

Wünsche noch einen schönen Abend!

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]